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Random access coding involves the encoding of a
random input string into a shorter message string.
The encoding should be such that any element of the
input string can be retrieved with high probability
from the message string. Such tasks have long been
studied as examples in which the communication of
quantum information can provide advantage, i.e. en-
hanced performance, over classical information, e.g.
[1, 3, 6, 8, 10, 15, 18, 19].
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Figure 1. The Torpedo Game is a pacificist alternative
to Battleship where the aim is to avoid sinking Alice’s
ship, depicted here in dimension 3.

However, random access coding concerns only
one kind of information retrieval. In this work we
introduce another such task – the Torpedo Game
(see Fig. 1). It is similar to random access coding,
but with additional requirements involving the re-
trieval of relative information about elements of the
input string. Taking a geometric perspective it may
also be viewed as a pacifist version of the popular
strategy game Battleship. Quantum strategies out-
perform classical strategies for the Torpedo Games
with bit and trit inputs. In particular, quantum
perfect strategies exist in the trit case and provide a
greater quantum advantage than for the com-
parable random access coding task [19].

Optimal quantum strategies emerge from an
analysis in terms of the discrete Wigner function.
Wigner negativity is a signature of non-classicality in
quantum systems that is related to contextuality and
that has been widely studied as a resource for quan-
tum speed-up and advantage [4, 5, 7, 9, 12, 14, 16,
20]. Knowing which characteristic lies at the source
of better-than-classical performances can both allow
for comparison of quantum systems in terms of their

utility, and offer a heuristic for generating further
examples of quantum-enhanced performance. Our
optimal quantum strategies are indeed Wigner neg-
ative, with perfect quantum strategies derived
from maximum Wigner negativity. We exploit
the fact that for x, z ∈ Zd:

Tr [|ψx,z〉〈ψx,z| (Ax,z + I)] = 0 (1)

where Ax,z is the phase-point operator at (x, z) ∈ Z2
d

and |ψx,z〉 is an eigenvector of Ax,z with eigenvalue
−1. These states display Wigner negativity. Yet
while negativity is necessary for advantage in the
Torpedo game, it is not sufficient.

To more precisely pinpoint the source of quan-
tum advantage we must look further. One candidate
is preparation contextuality [17], another signature
of non-classicality that has been linked to QRACs
in numerous studies [2, 6, 18]. It has been shown
to be necessary for advantage in a restricted class
of random access codes subject to an obliviousness
constraint [11, 16].

In this work, however, we focus on a different
characteristic called sequential contextuality [13]. It
indicates the absence of a hidden variable model re-
specting the sequential structure of a given protocol.
Subject to an assumption of bounded-memory,
we find that this characteristic is necessary and
sufficient for quantum advantage, not just in
random access coding but in any information re-
trieval task expressible in a sequential form. More-
over, we show that it quantifies the degree of
advantage that can be achieved:

Theorem. Given any information retrieval task ex-
pressible in a sequential communication scenario,
and strategy with empirical behaviour e,

ε ≥ NCF(e)ν

where ε is the probability of failure, averaged over
inputs and questions, NCF(e) is the noncontextual
fraction of e with respect to a dit ontology with d
fixed by the communication scenario, and ν := 1−θC
measures of the hardness of the task (where θC is the
classical value of the task).
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