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Extended abstract−A critical milestone in the field of quantum computing is the near-term demonstration of a so-
called quantum computational advantage. In principle, this could be done by constructing a quantum device which provably
outperforms its classical counterpart for a specific computational task. Among the promising candidates for demonstrating
a near-term quantum advantage are the so-called sub-universal quantum devices which are not universal, in the sense that
they cannot perform any quantum computation, but are realizable in principle by our current technologies [1]. Several
examples of such practically motivated sub-universal models which nevertheless capture a sense of quantum advantage
have been discovered in recent years. In most of these works, sampling from the output probability distribution of these
sub-universal devices has been shown to be classically impossible to do efficiently, provided widely believed complexity
theoretic conjectures hold [2, 3, 4, 5]. Thus, these devices demonstrate what is known as an exponential quantum speedup
(sometimes referred to as quantum supremacy) [6].

The first experimental demonstration of quantum speedup is a major milestone in quantum information. Recent
audacious experimental efforts [7] and subsequent proposals of their classical simulation [8] bring to light the challenges
and subtleties of achieving this goal. Among these challenges is the important issue of dealing with noise in the quantum
device. Indeed, it was shown in multiple works [9, 10, 11, 12, 13, 14] that noise can very easily lead to the breakdown of
quantum speedup, rendering the output probabilities of these devices (which in the noiseless case demonstrate quantum
speedup) classically simulable efficiently. There is clearly a great need to understand better the effect of noise, and develop
methods of mitigation. Unfortunately, introducing full-blown fault-tolerant techniques to deal with the noise [15, 16, 17]
adds a significant overhead, in terms of ancilla qubit number, circuit depth, and number of interactions with a classical
device. All of these typically scale with the system size. This is undesirable as it usually takes us out of the simplified
computational models which made sub-universal devices attractive in the first place. Though there are exceptions to this
for specific sub-universal models and specific (yet slightly unrealistic) types of noise [9].

In this work, we study how quantum speedup can be demonstrated in the presence of noise for a family of sampling
problems. We take as our noise model the local stochastic quantum noise, commonly studied in the quantum error correction
and fault-tolerance literature [18, 19, 20, 21]. Our sampling problems are built on a family of schemes essentially based on
local measurements on regular graph states composed of n qubits, which correspond to constant depth 2D nearest neighbor
(NN) quantum circuits showing quantum speedup [22, 23, 24, 25]. We show that these can be made fault-tolerant in a
way which maintains constant depth of the quantum circuits, albeit with poly(n) overhead in the number of ancilla qubits
used, and at most two rounds of efficient classical computation during the running of the circuit.

We present two constructions, each composed of a polynomial number of noisy qubits, some of which are prepared
in noisy magic states [26]. The first of our constructions is a constant depth quantum circuit composed of single and
two-qubit NN Clifford gates in four dimensions. This circuit has one layer of interaction with a classical computer before
final measurements. Our second construction is a constant depth quantum circuit with single and two-qubit NN Clifford
gates in three dimensions, but with two layers of interaction with a classical computer before the final measurements.

In constructing our circuits, we use various concepts from [18] such as single shot fault-tolerant logical state preparation
and forward propagation of local stochastic noise through a Clifford circuit. We also develop various new techniques, which
could have potential applications outside of this work, such as constant depth non-adaptive magic state distillation [26] and
constant depth output routing. Our developped techniques can be understood naturally when looking at the framework
of measurement based quantum computation (MBQC) [27].

Closest to our work are those of [18] and [28]. In [18], a constant depth 3D NN Clifford circuit is constructed to perform
a task which cannot be performed by any constant depth classical circuit. Their result is unconditional, robust to local
stochastic noise, and their circuit does not have any interaction with a classical device during running [18]. In our case,
we show that constant depth 3D NN Clifford circuits, with non-Clifford inputs, can perform a task which no polynomial
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depth classical circuit can perform. However, our result is conditioned on two complexity theoretic conjectures holding, is
robust to local stochastic noise, and requires two interactions with a classical computer while running. In [28] it is shown
that constant depth 3D NN Clifford circuits with non-Clifford input can perform a task which no polynomial time classical
circuit can perform. These circuits are robust to a specific noise [29], and have no interaction with a classical device when
running. However, the main disadvantage of the construction in [28] is that it is impractical, in the sense that one should
repeat the experiment (construct the circuit, then measure) an exponential number of times in order to observe an instance
which is hard for the classical computer to simulate. In our work, we overcome this problem using our new distillation
technique, thereby making the appearance of a hard instance very likely in only a few repetitions of the experiment, a
feature called single-instance hardness [22].
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