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Extended Abstract

The framework of Quantum Resource Theories (QRTs) [1] has proven to be a powerful framework
within quantum information [2–20]. Within the the language of QRTs, properties of different objects
deemed as resources can be addressed under the same umbrella and this has consequently led to the
cross fertilisation of ideas amongst different quantum phenomena; results in a particular QRT with
a particular resource has led to insights into different resources and QRTs of different objects. One
of the main goals of QRTs is to define resource quantifiers in order to properly quantify the amount
of a resource present in an object, as well as to devise operational tasks explicitly harnessing these
resources.

In this work, we introduce the resource quantifier of weight of resource for convex quantum resource
theories of states and measurements with arbitrary resources. We show that it captures the advantage
that a resourceful state (measurement) offers over all possible free states (measurements), in the op-
erational task of exclusion of subchannels (states). Furthermore, we introduce information-theoretic
quantities related to exclusion for quantum channels, and find a connection between the weight of
resource of a measurement, and the exclusion-type information of quantum-to-classical channels. The
results found in this article apply to the resource theory of entanglement, in which the weight of
resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition, intro-
duced in 1998. Consequently, the results found here provide an operational interpretation to this 21
year-old entanglement quantifier.
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Figure 1: Three-way correspondence between: resource quantifiers, operational tasks, and single-shot
information-theoretic quantities, for QRTs of measurements with arbitrary convex resources.
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