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Quantum theory predicts the possibility of mea-
suring correlations that cannot be explained by stan-
dard notions of causality [1]. These ‘nonlocal’ corre-
lations are a crucial resource for device-independent
tasks such as key-distribution [2–4] and randomness
expansion [5–7]. The idea is that because such corre-
lations cannot be explained using local hidden vari-
ables, the individual outcomes are random and un-
predictable to an adversary [3, 8, 9]. Several recent
advances have enabled the first experimental demon-
strations of device-independence [10–12]. However,
further theoretical and experimental advances are
needed before this becomes a practical technology.

In this work we study fundamental limits on non-
locality, asking whether a single pair of entangled
qubits could generate a long sequence of non-local
correlations. Such an approach could be useful for
situations where a significant bottleneck lies in the
state generation, such as in nitrogen vacancy based
experiments [13]. We study a scenario in which a sin-
gle Alice tries to establish nonlocal correlations with
a sequence of Bobs who measure sequentially one
half of an entangled qubit pair. An additional re-
striction we impose is that each Bob in the sequence
can only send a single qubit (his post-measurement
state) to the next. In particular, the classical infor-
mation pertaining to measurement choices and out-
comes of each Bob is not shared. It is in this sense
that the Bobs act independently of one another.

This sequential scenario (see Fig. 1) was intro-
duced in [14]. There it was shown that by modifying
the input distributions of the Bobs, so that one of
the inputs is highly favoured, an unbounded number
of Bobs could each have an expected CHSH viola-
tion [15] with the single Alice who measures once.
However, the authors also mentioned numerical evi-
dence suggesting that if the input distributions were
not modified (each Bob chooses a binary input uni-
formly at random) then at most two Bobs would be
able to have an expected CHSH violation with Alice.

By constructing an explicit measurement strat-
egy, we show that, contrary to what was previously
thought, there is no bound on the number of inde-
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Figure 1: A schematic of the considered se-
quential CHSH scenario. All random variables
X,A, Y (i), B(i) for i = 1, . . . , n have binary out-
comes. A quantum state ρAB(1) is initially shared be-
tween Alice and Bob(1). After Bob(1) has performed
his randomly selected measurement and recorded the
outcome he passes the qubit post-measurement state
to Bob(2) who repeats this process. Only the qubit
post-measurement states are sent to the next Bob.

pendent Bobs (with uniform inputs) that can have
an expected violation of the CHSH inequality with
Alice. We exhibit a class of initial two-qubit en-
tangled states that are capable of achieving an un-
bounded number of violations, which includes all
pure two-qubit entangled states.

Our result sheds a new light on the analysis of se-
quential scenarios. Previous works [14,16–21], which
analyze nonlocality, steering and entanglement in
the sequential setting, have restricted their analy-
ses to measurement strategies where the sharpness
of the measurements that each Bob uses are equal.
With this restricted class of measurement strategies,
strong limitations on the possible performance of the
various tasks were found. In particular, the work
of [17] shows that with the restricted class of mea-
surement strategies at most two Bobs can violate any
2-outcome Bell inequality with Alice in this scenario
when starting with a maximally entangled state. In
the present work we show that these limitations can
be overcome by using measurements with unequal
sharpness. This overturns some previous results in
the area and highlights the importance of consider-
ing the most general measurement strategies.
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