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Abstract. Well-developed theoretical tools exist to analyse how quantum dynamics can solve 

computational problems by varying Hamiltonians slowly (adiabatically). However, relatively few tools 

exist for the opposite limit of rapid quenches, used in quantum annealing and quantum walks. We 

develop a theoretical understanding and several practical tools for this regime. By analysing various 

energy expectation values, we show that monotonic quenches will yield a better result on average than 

random guessing. By characterising local dynamics, we identify cases where rapid quenches will lead 

to a substantially improved numerical scaling.  We then use these tools to develop heuristics for 

choosing control parameters. 
 

Keywords: adiabatic, quantum walk, continuous-time 

 Adiabatic quantum computing (AQC) [1], in 

which a Hamiltonian is varied slowly, is backed 

by well-developed theoretical tools. Likewise, 

continuous-time quantum walks (CTQW) [2], 

in which the Hamiltonian is held constant, and 

their application to quantum search are well 

understood analytically [3].   
In [4], by applying CTQW to finding ground-

states of spin-glasses, it was shown that using 

more physically feasible problem mappings 

(the Ising model) than unstructured search leads 

to drastically different behaviour and improved 

solution probability. Promisingly, using many 

short repeats hugely outperforms a single long 

run, making it more practical for near term 

hardware, on which maintaining long 

coherence times is difficult. Unless P=NP, 

algorithms which succeed with O(1) probability 

must maintain coherence exponentially long, 

while many repeats of algorithms with 

exponentially decreasing success probability 

can have mildly scaling coherence time. 

Furthermore, via numerical comparison with 

less structured problems, such as the random 

energy model [5], the salient aspects of the 

structure were identified. The use of CTQW for 

optimisation has been independently explored 

in [6]. 
In [7], it was shown that AQC and CTQW sit 

at the extreme ends of a spectrum of continuous 

time quantum computing methods, including 

the rapid quenches often used in quantum 

annealing [8, 9]. In [10], we develop several 

theoretical tools for the rapid quench regime. 

First, we analyse the energy expectation value 

of different elements of the Hamiltonian. From 

this, we show that monotonic quenches, where 

the strength of the problem Hamiltonian is 

consistently increased relative to fluctuation 

(driver) terms, will yield more optimal 

solutions on average than random guessing. 

Secondly, we develop methods to determine 

whether dynamics will occur locally under 

rapid quench Hamiltonians, and identify cases 

where a rapid quench will lead to a substantially 

increased solution probability. We also show 

how these tools can provide efficient heuristic 

estimates for control parameters (e.g Fig. 1), a 

key requirement for practical application of 

quantum annealing. 
The talk will be based on [4] and [10] and 

will begin with a gentle introduction to 

continuous-time quantum computing, with a 

focus on physically realistic problem mappings. 

I will then cover the theoretical understanding 

and tools we have developed for CTQW and 

rapid quenches, and finally discuss examples of 

using the heuristic methods these tools provide. 

 
Figure 1 Average success probability for a quantum 

walk run for a short time to find the ground-state of 

a spin-glass instance (with 𝑛 spins) using the 

problem specific heuristic hopping rate 𝛾heur from 

[4], compared to the more general heuristic 𝛾Dyn 

from [10]. 
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