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Using techniques from quantum information theory, we develop a systematic method

to obtain operator inequalities and identities in several matrix variables. These take the

form of polynomial-like expressions that involve matrix monomials Xα1
· · ·Xαr

, their traces

tr(Xα1 · · ·Xαr ), and tensor products. As a result, we obtain new operator matrix inequalities

for the positive cone, characterize the set of multilinear equivariant positive maps, and

construct matrix identities on tensor product spaces. This unifies several concepts from

quantum information theory as found in the study of quantum channels, entanglement

detection, quantum codes, and monogamy of entanglement.

Object of study — We study matrix contractions [1]: expressions that can be realised as

linear combination of matrix monomials (including 1), their traces, and their products. E.g.

ABC + tr(B)CA− 2 tr(AC) tr(B)1 . (1)

We demand the expressions to be multilinear and equivariant, which means that they are of degree

one in each variable and composed of matrix monomials and their traces. We ask: which multilinear

matrix contractions are positive on the positive cone (e.g. A,B,C ≥ 0)? Which expressions vanish

on all d× d matrices?

Results — We characterize all such much matrix inequalities for the positive cone (i.e.

multilinear equivariant positive maps) and obtain a one-to-one correspondence with Werner state

witnesses. We also characterize the set of all polynomial identities with tensor product structure.

This unifies and extends certain techniques that appear in the study of quantum channels [2],

entanglement [3], quantum marginal problem [4–6], monogamy [6], quantum codes [7], joint

measureability [8], time reversal [9]; it also expands on results and introduces new concepts in the

field of polynomial identity rings [10–12].
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