
There and back again: A circuit extraction tale
Miriam Backens1, Hector Miller-Bakewell2, Giovanni de Felice2, Leo Lobski3, John van de Wetering4

1 University of Birmingham, 2 University of Oxford, 3 ILLC, University of Amsterdam, 4 Radboud University Nijmegen

Translations between the quantum circuit model and the measurement-based one-way model are
useful for verification and optimisation of quantum computations. By expressing both one-way
computations and circuits in the common language of the ZX-calculus, we give the first algorithm
that can translate any one-way computation with extended gflow, i.e. allowing measurements in the
XY, XZ, and YZ-planes of the Bloch sphere, into an ancilla-free circuit. Circuits can be optimised by
translating them into a one-way computation, optimising this, and translating back.
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Computations in the measurement-based one-way model [12] are represented as measurement patterns [5,
6]. These specify the resource state for the computation (a graph state), as well as the measurements
which drive the computation, and the corrections which compensate for the non-deterministic outcomes
of quantum measurements. A measurement pattern is deterministically implementable if and only if it has
a property called generalised flow, or gflow [2]. Much research has focused on measurement patterns in
which all measurements lie in the XY-plane of the Bloch sphere (spanned by the eigenstates of Pauli-X
and Y ), as this case is computationally universal [12]. Yet the one-way model also allows measurements
in the XZ- and YZ-planes [2]. A gflow on a pattern with measurements in more than one plane is often
called an extended gflow [9]. Previous algorithms translating measurement patterns into circuits either
require ancillas [1, 13, 14] or apply only to patterns where all measurements are in the XY-plane [7, 11].

Following [7, 8], we use the ZX-calculus [3, 4] to represent both measurement patterns and quantum
circuits. Translations between the two models of quantum computation can then be performed by
graphically rewriting ZX-diagrams. ZX-calculus diagrams which closely correspond to measurement
patterns are called MBQC-like (e.g. Figure 1a), those corresponding to circuits are called circuit-like (e.g.
Figure 1b). An MBQC-like ZX-diagram is said to have (extended) gflow if and only if the associated
measurement pattern has (extended) gflow.

In this work, we show that certain graphical rewrites preserve the property of a ZX-diagram being
MBQC-like, as well as the property of it having extended gflow. Thus, we may use graphical rewriting
to find different measurement patterns representing the same computation; for example, we can remove
Clifford measurements as in [10]. We give the first algorithm that can take any measurement pattern which
has extended gflow and transform it into a circuit. The algorithm builds up on a previous circuit-extraction
algorithm for MBQC-like ZX-diagrams [7] that works only if all measurements are in the XY-plane.
It is also the most general currently-known algorithm for extracting a quantum circuit from unitary
ZX-diagrams. Quantum circuits can be optimised with respect to properties such as T-count by translating
them into measurement patterns, rewriting the pattern, and then re-extracting a circuit using our algorithm.

This is an extended abstract, the full paper can be found at https://arxiv.org/abs/2003.01664.
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Figure 1: The MBQC-like ZX-diagram with extended gflow (a) is rewritten by our algorithm (plus some
mild simplification) to the circuit-like ZX-diagram (b). The latter corresponds to the quantum circuit (c).
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