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1 Probably the most fundamental property of entropy is the strong subadditivity inequality [7]:
Given a tripartite system HABC = HA ⊗HB ⊗HC and a state ρABC on HABC , the following holds

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) , (SSA)

where S(ρ) = −Tr[ρ ln ρ] and for any subsystem D of ABC, ρD := TrDc [ρABC ]. Restated in terms
of the relative entropy, given by D(ρ‖σ) := Tr[ρ (ln ρ− lnσ)], (SSA) takes the following form:
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In this paper [2], we derive a new generalisation of the strong subadditivity of the entropy to the
setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras.
Let M ⊂ N1,N2 ⊂ N be four von Neumann algebras and let EM, E1, E2 be their corresponding
conditional expectations. When E1 ◦ E2 = E2 ◦ E1 = EM, we have:

D(ρ‖EM∗ (ρ)) ≤ D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ)) , (0.2)

where the coarse-graining maps [8] EM∗ , E1∗, E2∗ are the Hilbert-Schmidt duals of EM, E1, E2. We
recover (SSA) from (0.2) by taking N ≡ B(HABC), N1 ≡ B(HAB), N2 ≡ B(HBC) and M≡ B(HB).

Conditional expectations arising from the large time limit of a dissipative evolution on subregions
of a lattice spin system generally do not satisfy the commuting assumption. In this case, approxima-
tions of the (SSA) were found in the classical case for M ≡ C1H [5] and were recently generalized
to the quantum setting in [4, 3, 1, 6]. These inequalities, termed as approximate tensorization of the
relative entropy, take the following form

D(ρ‖σ) ≤ 1

1− 2c
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)
,

where σ := EM∗ (ρ) and c is measures the distance from the commuting assumption. Typically, c = 0
at infinite temperature, and remains small for conditional expectations onto far apart regions and at
high enough temperature.

In this paper, we take one step further and prove a weak approximate tensorization for the relative
entropy, which amounts to the existence of positive constants c ≥ 1 and d ≥ 0 such that

D(ρ‖EM∗ (ρ)) ≤ c
(
D(ρ‖E1∗(ρ)) +D(ρ‖E2∗(ρ))

)
+ d . (AT(c, d))

Here, we estimate both constants c and d in terms of the interactions appearing in the Hamiltonian
of the system, more specifically in terms of conditions of clustering of correlations in the setting of
quantum lattice spin systems. Our main application of these inequalities is in the context of mixing
times of quantum lattice spin systems, as their classical analogues have proven to be a key step in
modern proofs of the logarithmic Sobolev inequality for classical lattice spin system. However, we
expect these inequalities and their proof techniques to find other applications in quantum information
theory.
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