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Contextuality has been reported to be a resource for quan-
tum computation [1], analogous to non-locality which is a
known resource for quantum communication and cryptogra-
phy [2]. In recent work, Karanjai et al. [3] show that the
presence of contextuality places a lower bound on the spatial
complexity of classically simulating quantum processes. In
particular, they bound the memory cost of simulating Clif-
ford operators. The method to derive lower bound works for
a general family of classical simulations that can be framed
as stochastic evolution in ontological models (hidden vari-
able models): For instance, it generalizes the Gottesman-
Knill [7] and Wigner function simulation methods. However,
the techniques in [3] are limited to quantum processes that
of closed sub-theories, i.e., where products of measurable
quantities are measurable, which are a very limited class of
quantum circuits. Consequently, it excludes processes where
measurements are loyal.

In this work, we generalize this connection to non-closed
circuit families with a broader concept of contextuality,
namely, event-based contextuality [4]. We show that the
presence of “event-based” contextuality places new lower
bounds on the memory cost for simulating restricted classes
of quantum computation. We apply this result to the sim-
ulation of the restricted model of quantum computation
based on the braiding of Ising anyons known as topological
quantum computation (TQC) model [5]. This model is the
first known scheme of magic states distillation [6], a leading
paradigm in fault-tolerant quantum computing. It is also of
fundamental interest in the study of quantum resources that
power quantum computation, as it lies at the intersection of
two classically simulable sub-theories: FLO and Clifford cir-
cuits. For the TQC model, we prove that the lower bound in
the memory required in a simulation is Ω(n log2 n), where n
is the number of fermionic modes. This bound is extended
to fermionic linear optics (FLO), a fermionic analogous of
bosonic linear optics.
Lower bound in the memory cost

Since our goal is to simulate quantum statistics, the on-
tological model used for the classical simulation will re-
produce the Born rule probabilities of a quantum sub-
theory. In the classical simulation the density matrix is
represented by a probability distribution µρ(λ) over the
state space Λ and the measurements become sub-stochastics
maps, ΓO(λ′, k|λ). After a measurement the probability
distribution µρ(λ) is updated to µρ′(λ′) with probability
Pr(O, k|ρ, λ) =

∑
λ,λ′ ΓO(λ′, k|λ)µρ(λ). The internal state

λ ∈ Λ contains all the information necessary to characterize
the statistics of all measurements allowed in the sub-theory.
The lower bound in the space complexity is obtained by find-

ing a lower bound in the size of the state space Λ required
to simulate the sub-theory.

We can define a sub-theory as a set of observables O that
one can measure in a class of experiments. In a fixed sub-
theory we consider a set of quantum states S = {ρi} and
the set of all observables OS that have at least one eigen-
state in S. We show that if OS is event-contextual, then⋂
s supp(µρi

) = ∅ for any simulation of this sub-theory.
States that are not single-shot distinguishable[3] must be
classically represented by probability distributions that have
intersecting supports, i.e., these states must share at least
one internal state λ. This limits the size of the state space.
By considering the sub-theory defined by the set of quantum
states Stotal, we prove that the lower bound for the size of
the state space of this sub-theory is |Λ| ≥ Stotal/m where m
is the cardinality of the largest set S ⊂ Stotal that has a cor-
responding set of observables OS that are non-contextual.
Therefore, the memory cost of simulating this sub-theory is
lower bounded by logd(|Λ|) ≥ logd(Stotal)− logd(m).

Application to the TQC and FLO model

In the TQC model framework [5], the initial state can
be mapped to other states by the use of braid gates and
measurable observables. The states allowed in the sub-
theory can be stabilized by pairs of Majorana operators, e.g.,
C = (−im1m2,−im3m4, . . . ,−im2n−1m2n). Majorana op-
erators have obey commutation rules mimj +mjmi = 2δijI,
m†i = mi, for any i, j.

We show that the lower bound in the memory cost for the
simulation of Majorana fermions scales in Ω(n log2 n) in the
number of fermionic modes. We also show that the scaling
is optimal using the classical simulation methods in [7].

Quantum computation with fermionic linear optics can
be seen as a generalization of the TQC, where the unitaries,
called FLO gates, are not restricted to the π/4 angle [8]. We
prove that the bound computed for TQC can be extended for
FLO. Consequently, the lower bound in the spacial complex-
ity of simulating quantum computation with FLO is n log2 n.

Thus, our work establishes a connection between contex-
tuality and memory cost of classically simulating quantum
circuits. We do so for the most minimal scheme of magic
state distillation in a physically motivated setting. We de-
velop new techniques to derive lower bounds in the memory
cost of simulating physical sub-theories and apply them to
fermions for the first time.
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A Introduction
Since the manuscript of the submitted work is not published
yet, we provide here a brief comment on the method and the
results.

B Ontological model
We start by introducing the notion of sub-theory and defin-
ing the requirements of a classical algorithm that simulates
the statistics of a measurement outcome.

We can define a sub-theory as a set of observables O that
one can measure in a class of experiments. A sub-theory can
be characterized by its statistics, i.e., the probability of ob-
taining specific outcomes when measuring an observable. We
consider a state-space Λ, where λ ∈ Λ is an internal state
(or ontic state), which encodes all the information needed
to determine the statistics of the sub-theory. The cardi-
nality (size) of the state-space, |Λ|, determine the spatial
complexity of the simulation, i.e., number of classical bits
of memory required for the simulation. The density matrix
is represented, in the classical simulation, by a probability
distribution µρ(λ) over the state space. A set of von Neu-
mann instruments (CP maps),M = {POk }k, become a set of
classical intruments (sub-stochastics maps),MclΓO(λ′, k|λ).
After a measurement the probability distribution µρ(λ) is
updated to

µρ′
k
(λ′) =

∑
λ∈Λ ΓO(λ′, k|λ)µρ(λ)∑
λ,λ′ ΓO(λ′, k|λ)µρ(λ) , (1)

with probability

Pr(O, k|ρ, λ) =
∑
λ,λ′

ΓO(λ′, k|λ)µρ(λ). (2)

For the sub-theories considered in this work, the classi-
cal simulation can be summarized by these three objects
(Λ, {µρ}, {ΓO}), the state space, the set of probability distri-
butions over the state space and the stochastic maps. These
tools allow us to classically simulate sequences of measure-
ments in the sub-theory.

C Lower bound in the memory cost
In this section, we show the connection between the size
of the internal state space and contextuality. We start by
presenting the definition of single-shot distinguishability and
partitioning measurement, and its relation with event-based
contextuality.

If it is possible, within the sub-theory, to perform a mea-
surement that perfectly distinguishes between two different
states ρ and ρ′, then we say these states are single-shot dis-
tinguishable (SSD). Accordingly, in the classical simulation
of this sub-theory, the support of the probability distribu-
tions of SSD states is disjoint

(SSD) =⇒ supp(µρ) ∩ supp(µσ) = ∅. (3)

In other words, no internal state can be in the support of
two states that are SSD.

The SSD condition already ensures us a lower bound on
the cardinality |Λ| equal to the number of SSD states in the
sub-theory. However, some non-SSD states must also have
non-intersecting support of distributions.

Consider a set of quantum states S = {ρi} and the projec-
tive measurements of an observable O with outcome k that
maps the states in S to the set of post-measurement states
SO,k = {σk,i}. The observable O is a partitioning measure-
ment for S if the set of post-measurement states contains at
least one pair of orthogonal quantum states for every out-
come k. Therefore,⋂

i

supp(µσk,i
) = ∅ ∀k. (4)

Theorem 1. If, for a set of quantum states S = {ρi}, exists
a partitioning measurement O within the sub-theory, then⋂
i supp(µρi) = ∅ for any simulation of this sub-theory.

The proof is done by showing that if in the classical sim-
ulation, all states in the set S share at least one internal,
then the set OS is non-contextual.

The existence of a partitioning measurement for a set of
state S implies that there is no internal state the is shared
by all states. Consequently, this gives us another tool to find
lower bound for the size of the state space.

To define event-contextuality we first need to introduce
the concept of event. Consider a commuting o set of ob-
servables A = (A1, A2, · · · , Ak), known as context, and a
corresponding set of eigenvalues a = (a1, a2, · · · , ak). Here
we represent an event as a sequence of projective measure-
ments of a commuting set of observables A with outcomes
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a, PA
a = PA1

a1
PA2
a2
· · ·PAk

ak
. Let λ be the function that assigns

values (1, 0) for events depending on whether they happen
or not

λ(PA
a ) =

{
1, if PA

a ρPA
a 6= 0

0, if PA
a ρPA

a = 0,
(5)

for a quantum state ρ. The set of observables A is said to
be non-contextual if the value assigment λ(PA

a ) is the same
even whether is measured with another commuting context
or not, e.g. ∑

b

λ
(
PA,B

a,b

)
= λ

(
PA

a
)
. (6)

For certain sets of observables it can be shown that a the
value assign cannot be independent to the context that is
jointly measured. This is a proof of contextuality. We say
that the set of commuting observables A exhibits state-
independent contextuality if for every state ρ is contextual.

Theorem 2. Consider a set of quantum states S = {ρi}.
Let OS be the set of all observable operators that have at
least one eigenstate in S. If OS is event-contextual, then S
allows for partitioning measurement.

Corollary 3. If OS is event-contextual, then the intersec-
tion of the

⋂
s supp(µρi

) = ∅ for any simulation of this sub-
theory.

The theorems above give us all the tools needed to com-
pute the lower bound in the spatial complexity of simulating
classically quantum processes.

Theorem 4. Consider a sub-theory defined by Stotal. The
lower bound on the size of the state space of the classical
simulation of this sub-theory is

|Λ| ≥ Stotal

m
, (7)

where m is the cardinality of the largest set S ⊂ Stotal
such that the corresponding set of observables, OS, are non-
contextual, i.e.,

m = max
S
{|S| : OS is non-contextual} . (8)

D Application
We apply our result to the simulation of TQC and FLO.

Bravyi introduced TQC with Ising anyons that uses magic
states distillation to bring universality to the computation
[5]. In this framework, the initial state, |0 〉 = |0 〉⊗n,
can be mapped to all the other states by the use of braid
gates, Bij = exp(−π4mimj), and measurable observables,
Fij = −imimj , where mi are Majorana operators. Majo-
rana operators have the property that mimj+mjmi = 2δijI
for any i, j. The states allowed in the sub-theory can be sta-
bilized by pairs of Majorana operators, e.g.,

C = (−im1m2,−im3m4, . . . ,−im2n−1m2n). (9)

Applying any sequence of braid gates Bij to the state above
is equivalent to updating the stabilizer group

C ′ = (−imπ(1)mπ(2), . . . ,−imπ(2n−1)mπ(2n)), (10)

where π is a permutation of the numbers {1, 2, . . . , 2n}. Con-
sequently, the number os states allowed in the sub-theory is

|Stotal| =
(2n)!
n! . (11)

The first ingredient to compute the size of the state space
is the total number of states in the sub-theory. The next
step is to find the cardinality of the largest set states that
correspond to a non-contextual set of observables. We show
the cardinality of this set is upper bounded by a set of n(n−
1) + 1 pairwise non-orthogonal states.

Lemma 5. Any set S of non-orthogonal states with car-
dinality |S| ≥ n(n − 1) + 1 have a corresponding set OS
that contains all measurable observables in the Majorana
sub-theory.

In a companion work we show together with collaborators
that Majorana fermions sub-theory exhibits contextuality
for n ≥ 3. Consequently, a set of n(n− 1) + 1 pairwise non-
orthogonal states will correspond to a set of observables that
is contextual. Consequently, m < n(n− 1) + 1 and

|Λ| ≥ |Stotal|
m

≥ |Stotal|
n(n− 1) + 1 . (12)

Theorem 6. The number of internal states required by a
classical simulation of the Majorana fermion sub-theory is

|Λ| ≥ 2n

n(n− 1) + 1

n∏
k=1

(2k − 1). (13)

The memory required to store these internal states is lower
bounded in Ω(n log2 n).

TQC with Ising anyons can be seen as a special case of the
quantum computation with fermionic linear optics (FLO).
Hence, this result can be extended to the classical simula-
tion of FLO by discretizing the number of states allowed in
the FLO sub-theory via ε-approximation. The number of ε-
approximate states is proportional to (2n)!/n!, consequently
all the results described above can be applied for this sub-
theory, given rising the same lower bound in the memory
cost of classically simulating the sub-theory.
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