
 

Solving Vehicle Routing Problem Using Quantum Approximate 
Optimization Algorithm  
Utkarsh​1​, Bikash K. Behera​2​, and Prasanta K. Panigrahi​3 

1 ​Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology 
Hyderabad, Hyderabad 500032, Telangana, India. 
2​ Bikash’s Quantum (OPC) Pvt. Ltd., Balindi, Mohanpur 741246, Nadia, West Bengal, India. 
3 ​Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West 
Bengal, India.   
 
Abstract. Here, we describe the usage of Quantum Approximate Optimization Algorithm (QAOA), a             
quantum-classical heuristic, to solve the combinatorial optimization task called Vehicle Routing           
Problem (VRP). We outline its Ising formulation and solve it by minimizing its simulated Ising               
Hamiltonian using the IBM Qiskit platform. Here, we attempt to find solutions for VRP problem               
instance: (n, k), with n locations and k vehicles. We find that the performance of QAOA is dependent                  
upon the classical optimizer used, the way parameters are initialized, the number of steps p in which                 
an adiabatic path is realized, and on the problem instance itself. 
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In general, quantum computing devices are      
supposed to have a computational advantage      
over classical processors by using quantum      
resources such as superposition and     
entanglement. However, the computational    
capabilities of these current generation     
quantum processors also known as Noisy      
Intermediate-Scale Quantum (NISQ) devices,    
are considerably restricted due to their      
intermediate size (in terms of qubits count),       
limited connectivity, imperfect qubit-control,    
short coherence time and minimal error      
correction. Hence, they are only able to run        
algorithms with limited circuit depth. These      
belong to the class of quantum-classical hybrid       
variational algorithms and are proven effective      
at solving combinatorial optimization    
problems. Here, in this paper, we use Quantum        
Approximate Optimization Algorithm to solve     
the Vehicle Routing Problem (VRP).  
 
1. VRP 
Vehicle Routing Problem is an NP-hard      
combinatorial optimization problem. Any    
problem instance (n, k) of VRP involves k        
vehicles, and n−1 locations (other than the       
depot D). Its solution is the set of routes in          
which all of the k vehicles begin and end in the           
D, such that each location is visited exactly        

once. The optimal route is the one in which the          
total distance travelled by k vehicles is least. 
 
2. ISING FORMULATION 
To solve a problem instance (n, k) of VRP         
using QAOA, we first need to map it to the          
minimization, i.e., finding the ground state of       
an Ising Hamiltonian Hc. We write the       
formulation for VRP as the following and then        
an energy functional HVRP: 

 

 
Here, we are skipping details about proof and        
constraints for brevity. This H can now be        
mapped the spin Ising formulation. QAOA can       
be thought of as a coarsely trotterized       
adiabatic time evolution in p steps to        
i.e., the ground state of a Hamiltonian Hc        
which encodes the problem from i.e.,       
the ground state of the Hamiltonian Hm which        
is known and easier to prepare. In gate-model        
quantum computation this means that starting      
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from some initial product state , we       
apply a parameterized gate sequence to      
produce the state . This is done using a         
set of parameters {β, γ}, which are provided        
by a classical processor, and also optimized by        
an optimization routine based on the result of        
energy measurement for final state .  
 
3. SIMULATION AND RESULTS 
We have executed QAOA using IBM Qiskit’s       
both noise-free and noisy backends to solve       
VRP for three problem instances: (4, 2), (5, 2),         
and (5, 3), where each (n, k) represents a         
problem with n location and k vehicles with a         
distance matrix D representing the squared      
euclidean distances between locations. One     
needs N=n×(n−1) qubits to encode the      
problem instance, i.e., state of each qubit       
represents the possibility of an edge between       
two nodes.  

 
Figure ​1 Visualization of the solution state indexed 779         
= “110100001100" for D = [[0. 36.84 5.06 30.63], [36.84          
0. 24.55 63.22], [5.06 24.55 0 15.50], [30.63 63.22 15.50          
0]]. The cost is: C = 30:632 + 15:497 + 5:061 +            
2×36:840 = 124:871. Here, the node with yellow star         
denotes the depot, or the origin. 

Through the results of our simulations, we       
conclude that in general, for a finite value of p,          
there is no guarantee that the solution achieved        
by QAOA corresponds to the most optimal       
solution of the original combinatorial     
optimization problem. This is because we are       
trying to guess the adiabatic time evolution       
path using p steps. So, the first straightforward        
reason could be that the chosen value p does         
not produce a good enough guess. Then,       
another reason which could explain failure of       

QAOA at larger values of p could be the         
emergence of new local minimums in our       
solution energy-landscape which traps both     
gradient-free and gradient-based optimizers    
and make them converge prematurely.     
Moreover, it was seen that on noisy       
simulators, the noise-based errors affect both      
the fidelity of state: , prepared by a        
quantum routine, and the minimized     
expectation value of ​, i.e., .  
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