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We study the role played by the spectral gap in the complexity of the LocalHamiltonian problem. To do so,
we consider the setting in which one estimates the ground-state energy to within inverse exponential precision.
In this setting, the complexity of LocalHamiltonian is magnified from QMA to PSPACE. We show that the
full complexity of the high precision case only comes about when the spectral gap is exponentially small. We
also obtain implications for the representability and circuit complexity of ground states of local Hamiltonians,
uniqueness of quantum witnesses, and amplification of quantum witnesses in the presence of postselection.
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Finding effective descriptions of ground states of
many-body Hamiltonians on n qubits is a very natu-
ral and important task in physics. Given the preva-
lence and importance of this task, an important ques-
tion is that of the computational difficulty of solving
this task in naturally occurring situations, which can be
formalized through the LOCALHAMILTONIAN prob-
lem [1, 2]. One quantity that plays a huge role in the
ground-state physics of a Hamiltonian is the spectral
gap, whose role in the context of the LOCALHAMIL-
TONIAN problem is much less clear. In particular, it
is not known whether LOCALHAMILTONIAN is QMA-
complete in the presence of nontrivial lower bounds on
the spectral gap [3–6].

In this work [7], we take an initial step towards un-
derstanding the role played by the spectral gap in the
LOCALHAMILTONIAN problem. To do so, we study
QMA in the precise setting, i.e. the class PreciseQMA,
which translates to computing the ground-state energy
to within inverse-exponential precision in the system
size. Fefferman and Lin [8] studied the complexity
of this class and showed the mysterious result that it
equals PSPACE. This is surprising since QMA ⊆
PP [9–11], and an alternative characterization of the
class PP is PreciseBQP, which can handle inverse-
exponentially small promise gaps.

We provide an explanation for the unexpected boost
in complexity from QMA to PSPACE. Specifically, we
find that in order for the precise version of LOCAL-
HAMILTONIAN to be PSPACE-hard, the spectral gap
of the Hamiltonian must necessarily shrink superpoly-
nomially with n. We give strong evidence that if the
spectral gap shrinks no faster than a polynomial in the
system size, the complexity of the problem is strictly
less powerful. In particular, we show that this prob-
lem characterizes the complexity class PP, which is a
subset of PSPACE and is widely believed to be dis-
tinct from PSPACE. Our results therefore bring out the
importance of the spectral gap, a quantity not well un-

derstood so far in Hamiltonian complexity.
Another main result of ours concerns the existence

of polynomial-size quantum circuits to prepare ground
states of local Hamiltonians. This is an important
question that has implications in circuit-complexity of
ground states of natural Hamiltonians and is directly re-
lated to whether natural Hamiltonians can be efficiently
cooled down to zero temperature. In complexity-
thoeretic language, this is phrased in terms of the power
of classical versus quantum witnesses in Merlin-Arthur
proof systems, or more formally, the so-called QMA
vs. QCMA question. These classes are believed to be
inequivalent in the usual [12, 13] and precise [14, 15]
regimes. Interestingly, we show strong equivalence re-
sults for the PreciseQMA vs. PreciseQCMA question
in the presence of spectral gaps.

Our results are summarized in the table below and
mention the complexity of computing the ground-state
energy of a ∆-gapped Hamiltonian to precision δ. For
the second and third columns, there is a promise that
there is a circuit (a classical witness) to prepare a low-
energy state, while the last two columns have no such
promise.

Spectral
gap (∆)

Classical witness Quantum witness

δ = 1/poly δ = 1/exp δ = 1/poly δ = 1/exp

1/poly QCMA PP PGQMA [3] PP
1/exp QCMA NPPP ? PSPACE
0 QCMA NPPP QMA [1] PSPACE [8]

TABLE I: Complexity of variants of the
LOCALHAMILTONIAN problem as a function of δ, the
precision, and ∆, the spectral gap. The problem is
complete for the class mentioned in each cell. The
question mark indicates that the problem is
uncharacterized. All results except the ones with a
citation are from our work [7].
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