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Motivation: Impressive recent developments in experimental quantum physics are enabling the

manipulation of quantum systems of larger and larger sizes. The exploration of quantum systems

at this scale can lead to new insights into open questions in many-body quantum physics, which are

out of the reach of currently known simulation methods using classical computers. Indeed, several

experimental demonstrations of large-scale quantum simulators that outperform certain classical

simulations methods have already been reported [2, 3]. Unfortunately, the evidence for quantum

advantage in these experiments is based solely on numerical benchmarks against available classical

algorithms such as, e.g., DMRG [2]. Hence, this does not exclude the possibility that a future

classical algorithm is found to perform as efficiently as a given quantum simulator.

For this reason, it is of utmost importance to put statements about quantum advantage on rig-

orous mathematical ground. This has been the subject of several recent works which demonstrate,

based on strong complexity-theoretic evidence, that there are certain tasks that can be performed

efficiently by quantum devices for which an efficient classical algorithm cannot exist. These are

based on sampling problems that exhibit certain robustness against noise and are tailored to near-

term hardware. Examples include boson sampling [4], IQP sampling [5], sampling from random

quantum circuits [6, 7] and quantum simulations of constant-time Hamiltonian evolutions [8, 9].

The key strength of these results is that the existence of a quantum advantage is provable assuming

plausible complexity theoretic conjectures, such as the non-collapse of the Polynomial Hierarchy

[4, 5]. The prospect of demonstrating quantum speed-ups in a reliable way has initiated a new field

of theoretical and experimental activity coined quantum computational advantage (or quantum

“supremacy”) [10, 11]. All these works, however, mostly rely on “unphysical” sampling problems

that were discovered for the sole purpose of demonstrating a quantum advantage, and further

connections with more physically-motivated questions are yet to be explored.

The work of Ref. [12] can be seen as a first attempt to establish such a connection, in the context

of a molecular spectroscopy problem. Therein, the authors show the problem of sampling from

the vibronic spectrum of a molecule could be solved by a ”quantum supremacy device” (a boson

sampler) but no rigorous hardness proofs for the spectroscopy problem at hand are presented.

The main aim of our work is to provide a rigorous connection between quantum advantage results

and physically-motivated problems. Namely, we focus on the problem of sampling measurement

outcomes of a physical observable, such as the Hamiltonian of a many-body quantum system. Our

main result is to show that it is classically hard to simulate measurements of simple families of local

Hamiltonians (e.g., with nearest neighbour interactions on the 2D square lattice) for certain regimes

of measurement resolution and even in the presence of certain types of noise, assuming standard

complexity theoretic conjectures. On the other hand, we demonstrate that such measurements can

be efficiently implemented on a quantum device. This leads to a conceivable quantum advantage
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proposals based on measurements of many-body Hamiltonians.

Problem: Following Refs. [13–15], we characterize the quality of a measurement by the mea-

surement resolution δ, which sets the smallest measurement unit, and the measurement confidence

η. For example, an energy measurement of an eigenstate |ψE〉 with energy E is said to have

resolution δ and confidence η if it outputs an estimate E′ such that

Pr(|E′ − E| ≤ δ) ≥ η. (1)

A generalization of Eq. (1) for arbitrary input states defines the target probability distribution we

would like to sample from. The finite resolution and measurement confidence result from natural

limitations such as a finite measurement time or energy, which are present even in a noiseless

measurement device. In addition, to take into account the unavoidable presence of noise in the

implementation of a realistic measurement, we introduce the sampling error parameter β. This

parameter quantifies the deviation in `1-norm between the target outcome distribution and that

of an ideal measurement of resolution δ and confidence η.

All our results concern measurements of k-local Hamiltonians acting on n qubits (two level

quantum systems) i.e., Hamiltonians of the form H =
∑

j Hj where each term Hj acts on k qubits,

for constant k ∈ O(1). Moreover, we only consider measurements on product quantum states, as

we would like that the complexity of the problem comes from the Hamiltonian and not the state

to be measured.

Terminology: To analyse the hardness of sampling from energy measurements, we consider

two regimes of measurement resolution. The first regime, that we define as standard resolution,

corresponds to the scaling of the parameter δ as 1/poly(n). For general Hamiltonians, this is the

best that can be achieved by a quantum device [16] in polynomial time, for example, by estimating

the eigenvalues of the time-evolution operator via quantum phase estimation[17]. This can be

seen as a coarse-grained energy measurement since, in general, it is not able to distinguish each

of the exponentially many eigenvalues. On the other hand, as discussed in [15], in some specific

situations one can exploit knowledge of the Hamiltonian to efficiently achieve what we refer to as a

super-resolution measurement, i.e. an exponentially small measurement resolution δ = 1/ exp(n).

Furthermore, regarding the sampling error parameter β, we consider two regimes. We define

the measurement as “approximate” [4, 5] when the desired sampling error β is required to be a

small constant independent of the system size n. Moreover, we define the “near-exact” sampling

regime if the sampling error β is required to be inverse-exponential in the input size.

Results: Our results on classical hardness of simulating energy measurements concern the

previously defined regimes of resolution and sampling errors as summarized in Table I and in more

detail below. For the sake of clarity we omit the confidence parameter η, which can be taken to be

η = 1−O(β). Our main contributions are the following:

(i) We provide quantum advantage protocols for approximate super-resolution energy measure-

ments. Specifically, we consider Hamiltonians with nearest-neighbor interactions on 2D lattices

that can be efficiently diagonalized on a quantum computer. For the latter, we show, first, that

approximate super-resolution measurements can be implemented by building an approximate sam-

pler from the diagonalizing quantum circuit (Theorem 1 of Ref. [1]). At the same time, we prove

that these measurements are hard to simulate classically assuming plausible complexity-theoretic

conjectures (Corollary 1 of Ref. [1]). This leads to a verifiable quantum advantage result based on

energy measurements that could be feasibly implemented in available quantum simulators. These
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Super-resolution

δ = 1/exp(n)

Standard-resolution

δ = 1/poly(n)

Near-exact samp.

β = 1/2poly(n)
(i) PH-collapse (ii) PH-collapse

Approx. samp.

β = const.
(i) PH-collapse* (iii) BPP=BQP

Table I: Our results on classical hardness for the energy measurement problem, summarized in points

(i)-(iii). For the different regimes of resolution δ and sampling error β, we show the complexity theoretic

implications of the existence of an efficient classical algorithm for sampling outcomes of energy measurements,

corresponding to the local Hamiltonians we construct. The cells in grey correspond to problems that tolerate

a certain amount of noise and can possibly be solved by a realistic (noisy) quantum computer. In particular,

in Ref. [1], we describe an efficient quantum protocol for approximate super-resolution energy measurements,

which could be used to demonstrate a quantum advantage. This result, marked by “*”, requires plausible

complexity theoretic assumptions other than the collapse of the Polynomial Hierarchy (PH).

results exploit a connection between quantum advantage proposals based on simulating constant-

time Hamiltonian dynamics [8, 9] and energy measurement problems.

(ii) Super-resolution measurement procedures for arbitrary Hamiltonians are unlikely to exist based

on complexity theoretic evidence [15, 18]. For this reason, we investigate the hardness of energy

measurements with standard resolution. Namely, we give complexity-theoretic evidence that clas-

sical computers cannot efficiently simulate energy measurements with standard resolution, even

for simple translation-invariant nearest-neighbor Hamiltonians on the square lattice (Theorem 3 of

Ref. [1]). Analogously to results obtained in Refs. [19–21] for other sampling problems, our hardness

result is valid in the near-exact sampling regime where β = 0 or is inverse-exponential. We give two

hardness proofs, one being based on the quantum advantage proposal from two-dimensional IQP

circuits [9], the other being based on circuit-to-Hamiltonian constructions [22]. This near-exact

sampling problem can be solved efficiently by an ideal (noiseless) quantum computer. However, it

is unlikely that this is possible in a realistic, even using fault-tolerant techniques.

(iii) Ideally, one would like a physically motivated quantum advantage experiment based on ap-

proximate sampling problems with standard resolution, which are more resilient to imperfections.

However, we argue that, with current techniques, it is not possible to link the classical hardness of

this problem to a Polynomial Hierarchy (PH) collapse as in Refs. [4, 5]. As an intermediate step,

we provide alternative hardness results inspired by the BQP-hardness of this problem [13, 14]. Us-

ing circuit-to-Hamiltonian constructions [22], we show that a hypothetical classical simulator for

energy measurement of local Hamiltonians could be used to approximate arbitrary marginals of the

output distribution of any poly-sized quantum circuit (Theorem 4 of Ref. [1]). Based on hardness

of simulating universal quantum circuits [6, 23–25], these results give evidence that approximately

measuring a local Feynman-Kitaev Hamiltonian in the standard resolution regime is classically

intractable. As we will discuss in our manuscript, an open challenge in complexity theory would be

to tie these hardness results to a Polynomial Hierarchy (PH) complexity-theoretic collapse or other

more standard complexity thoeretic conjectures. Such a result could have additional implications

for the development of quantum protocols exhibiting physically-motivated quantum advantages.

Conclusion: Overall, we believe our work brings a new perspective to problem of demonstrating

quantum advantage and poses interesting new questions related to the complexity of simulating

measurements of (random, local) Hamiltonians. Furthermore, we introduce the concept of quantum
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diagonalizable Hamiltonians, a class of Hamiltonians that are exponentially fast-forwardable (in the

sense of Atia-Aharonov [15]), and highlight the importance of these properties towards constructing

new examples of quantum computational advantage that are robust to experimental imperfections.

This could further inspire novel quantum algorithms to expand our knowledge of the inner structure

of Hamiltonians as well as new demonstrations of quantum advantage for measuring other quantities

of interest in quantum many-body physics.
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