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To achieve the promising advantages of quantum technologies one must engineer individual quantum com-
ponents with an enormous precision. From an engineering perspective, improving such noisy intermediate
scale quantum (NISQ) devices [1, 2] requires advanced and flexible diagnostic techniques to extract actionable
advice on how to improve a device. One of the most basic diagnostic tasks is the extraction of tomographic
information about quantum states from experimentally measured data. Indeed, at the heart of every quantum
computation is the preparation of a quantum state. Quantum state tomography can therefore provide valuable
information for improving quantum devices beyond a mere benchmarking of their correct functioning [3].

However, in any such endeavour one encounters the following fundamental challenge: In order to arrive at
an accurate state estimate, most tomography schemes rely on measurement devices that are calibrated to a very
high precision. At the same time, a precise and detailed characterization of a measurement device requires
accurate state preparations. But characterizing the state preparation was the goal to begin with. We are trapped
in a vicious cycle. This constitutes a fundamental obstacle to the improvement of quantum devices.

In this work, we break the vicious cycle. We observe that in reasonably controlled quantum devices, com-
monly encountered quantum states exhibit a natural structure: they are close to being pure. We leverage this
natural property to prove that one can simultaneously learn an unknown calibration of a measurement device
and a low-rank quantum state. We thus arrive at what we coin a semi-device-dependent scheme in which the
dependence on the measurement apparatus is significantly softened.

In order to achieve this goal, we formulate the blind tomography problem as the recovery task of a highly
structured signal. In mathematical terms, the blind tomography task that we solve is to infer a vector ξ of n
calibration parameters and a rank-r quantum state ρ from data of the form

y = A(ξ ⊗ ρ), (1)

where A is a linear map describing the measurement model. Such data arise, for example, when we perform
measurements of a multi-qubit Pauli operator Wk with expectation value Tr [ρWk] =: [A0(ρ)]k, that are dis-
turbed by coherent errors which affect only some of the Pauli matrices, a setting that is natural in ion trap
platforms. For instance, if the natural measurement basis is the computational Z-basis and Hadamard gates
incur a small coherent error with angle φ around the Z-axis, then a measurement of a Pauli-Y observable
will be replaced by an additive mixture of Pauli-Y and Pauli-X measurement weighted with certain calibra-
tion coefficients ξi. In many situations the daunting uncertainty about the device calibration is small and can
be approximated as a linear deviation from an empirically known calibration baseline, resulting in a faulty
measurement

y = ξ0A0(ρ) +
∑
i

ξiAi(ρ) =: A(ξ ⊗ ρ). (2)

Our formulation of the blind tomography problem allows us to exploit and further develop a powerful formal
machinery from signal processing to devise a scalable self-calibrating state tomography scheme that comes with
rigorous performance guarantees. More specifically, we further develop so-called iterative hard-thresholding
(IHT) algorithms [4] – a key work horse for solving structured linear inverse problems in in the field of model-
based compressed sensing [5, 6]. We begin by showing a negative result, namely, that any such approach,
when applied to the blind tomography problem (1) directly, does not yield an efficient algorithm for the blind
tomography problem.

We proceed by observing that the blind tomography problem can naturally be relaxed to a related recovery
problem, which we call the sparse demixing tomography problem. For this problem we develop an algorithm,
the SDT-Algorithm. For the toy setting in which the measurement data is given by expectation values of
highly unstructured (Gaussian) observables we not only show that it requires a close-to-optimal number of
measurements, but also that it quickly converges to the optimal solution. This shows that the SDT algorithm
efficiently solves the blind tomography problem in an idealized scenario. Viewed from a signal-processing
perspective, these rigorous results generalize work on the demixing and recovery of multiple low-rank matrices
of Ref. [7] to sparse mixtures.

Complementing these conceptual and rigorous insights, we numerically demonstrate that blind quantum
tomography is possible and practically feasible using constrained alternating optimization by exploiting low-
rank assumptions in the practical setting described above.
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