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We introduce the concept of phase-space-inequality conditions for the verification of nonclassical-
ity. This approach allows us to reveal quantum correlations even if the corresponding phase-space
distributions are nonnegative. A fundamental relation between these inequality conditions and cor-
relations measurements is given. The strength of the method is demonstrated by certifying quantum
correlations from experimental data where other methods fail to do so.

The identification and characterization of nonclassical
state of light is a central task in quantum optics and pho-
tonic quantum information. Nonclassicality as a resource
is of major importance for quantum technologies such
as quantum metrology, communication, or entanglement
generation. Therefore, it is crucial to develop efficient
and experimentally accessible tools for the characteriza-
tion of nonclassical light. One possibility of identifying
genuine nonclassical features is using the framework of
quasiprobability distributions [1]. Alternatively, inequal-
ity conditions based on moments of observables can be
used [2]. Both approaches come with their own advan-
tages and drawbacks.

Here, we introduce a framework which unifies the cer-
tification of quantum correlations through quasiprobabil-
ity distributions and inequality conditions. In this way,
we demonstrate a deep connection between correlation
measurements and phase-space distributions and device
nonclassicality conditions which exploit the advantages
of both approaches. Firstly, we derive conditions based
on Chebyshev’s integral inequality which relate different
phase-space distributions to each other [3]. Importantly,
this approach allows us to certify nonclassicality even if
the involved phase-space distributions are nonnegative.
Additionally, we show that the derived phase-space in-
equalities are closely related to correlation measurements
which are widely used for certifying quantum correlations
in quantum optics.

Secondly, we unify the the notions of quasiprobabilities
and matrices of correlation functions [4]. The method de-
veloped here correlates arbitrary phase-space functions
at arbitrary points in phase space, including multimode
scenarios and higher-order correlations. Thus, it provides
a profound conceptual insight and unites these two fun-
damental tools of testing for nonclassicality. To demon-
strate the versatility of our technique, the quantum char-
acteristics of discrete- and continuous-variable, single-
and multimode, as well as pure and mixed states are
certified.

We illustrate the strength and practicality of the pre-

sented methods by applying them to experimental data
[5]. In particular, we use different phase-space inequality
conditions to certify the nonclassical character of lossy
and noise single-photon states. The single-photon state
is generated via heralding detection from a spontaneous
parametric down-conversion source and is recorded via
balanced homodyne detection. Different loss and noise
levels are introduced. Remarkably, we can detect non-
classicality in parameter regions where other established
methods fails to do so.

FIG. 1. Phase-space inequality of a squeezed state. Negativi-
ties certify nonclassicality despite the fact that the underlying
distributions (Q and W ) are nonnegative.
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