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Abstract. We establish the potential of continuous-variable Gaussian states in performing reservoir 

computing with linear systems. Reservoir computing is a machine learning approach to processing of 

temporal signals. It exploits the computational power, high-dimensional state space and memory of 

generic complex systems to achieve its goal, avoiding the need for precise engineering. We prove that 

universal reservoir computing can be achieved without requiring non-linearity or non-Gaussianity 

resources, show that universal reservoir computing can be powered by quantum fluctuations such as 

squeezed vacuum and demonstrate how information processing can be tuned by just changing the input 

encoding while keeping the reservoir fixed. 
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Extended abstract. Observables of physical 

systems driven by time-dependent inputs can 

become functions of the input history. The 

central principle behind reservoir computing is 

to exploit this by combining the observables 

with a simple readout function to achieve 

nontrivial information processing, such as real-

time speech recognition or chaotic time series 

prediction. Since both the memory of past 

inputs and bulk of the processing is offloaded to 

the reservoir this can potentially lead to 

extremely compact and energy efficient 

reservoir computers. In recent years proposals 

have been made to harness the dynamics of 

quantum systems for reservoir computing [1-6]. 

In our work, available online at [7], we establish 

the potential of continuous-variable Gaussian 

states for reservoir computing in a quantum 

framework, going beyond previous optical 

approaches in the classical regime [8-11]. 

 

We consider linear networks of interacting 

quantum harmonic oscillators. The classical 

input is injected into the network by 

periodically resetting the state of one of the 

oscillators—the ancilla—while the rest of the 

network plays the role of the reservoir. The 

output is a function of the first and second 

moments of reservoir operators. The scheme is 

depicted in Figure 1. Measurement back-action 

is not considered; addressing the role of 

measurements is still a mostly open challenge 

for quantum reservoir computing and outside of 

the scope of present work. We analyse the 

proposed model using contemporary reservoir 

computing theory. 

 

We show that the proposed model is universal, 

i.e. any continuous function of a finite number 

of past inputs can be approximated. We show 

that the encoding of the input to states of the 

ancilla acts as both a source and means to 

control the reservoir memory. Finally, we show 

that reservoir computing with nonclassical 

states retains both the power and versatility of, 

e.g., coherent states. Our results introduce a 

new research paradigm for the fledgling field of 

quantum reservoir computing and the 

engineering of Gaussian quantum states. Using 

Gaussian states brings the model within 

experimental reach. Possible follow-up 

research includes experiments, going beyond 

classical temporal tasks and exploring the 

potential benefits of experimentally feasible 

non-Gaussian operations. 

 

 

 
Figure 1 Reservoir computing scheme. Periodical 

state resets of the ancilla inject the time-dependent 

input into the reservoir. The output is a simple 

function of reservoir observables, trained to realize 

a desired input-output map. 
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