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Abstract. We study a generalisation of the Mermin–Peres magic square game to arbitrary rectangular 
dimensions. We characterise these in terms of their optimal win probabilities for quantum strategies. 
We find that for dimensions at least 3 × 3, quantum strategies can win with certainty; for dimensions 
1 × 𝑛, they do not outperform classical strategies; for dimensions 2 × 𝑛, we give lower/upper bounds 
that both outperform the classical strategies. Finally, we apply our findings to certified randomness 
expansion. We first find the winning probability of games having a distinguished input with 
deterministic outcome, and then give robustness and rates as in Miller and Shi (2017). 
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The Mermin–Peres magic square game [2,3] 
has played an important role in the foundations 
of quantum theory. It is a simple two-party 
game that can be won with certainty by 
quantum parties sharing entanglement, yet it 
can only be won with smaller probability by 
classical parties sharing randomness. This 
property is also known as quantum pseudo-
telepathy, and it can be used as an example of 
strong contextuality. 
In this contribution, we introduce a 
generalisation of this game to rectangular 
dimensions, characterise its winning 
probabilities, and apply the results to certified 
randomness expansion. 
1 Magic Rectangles: Definition & Properties 
An 𝑚 × 𝑛 rectangle is fixed, along with 
sequences 𝛼!, 𝛼", … , 𝛼# and 𝛽!, 𝛽", … , 𝛽$ from 
{+1,−1} such that: 𝛼!𝛼"…𝛼# ∙ 𝛽!𝛽"…𝛽$ =
−1. This fixes the game. Two players, Alice 
and Bob, are given an empty row/column of this 
rectangle which they must fill according to the 
rules: (i) Each cell must be from {+1,−1}, (ii) 
the product of Alice’s/Bob’s entries should be 
𝛼% , 𝛽&. The players win the game if they filled 
the common cell with the same value. 
Properties: We note that a game is fixed by the 
dimension of the rectangle and the sequences of 
α’s and β’s. We prove that the optimal winning 
probabilities for any set of behaviours 
(classical, quantum, almost quantum, non-
signalling) are: (1) the same for all games of the 
same dimension, (2) symmetric with respect to 
row/column exchange, and (3) monotonically 
increasing with the dimension of the rectangle. 

2 Magic Rectangles: Characterisation 
The regular magic square game is a 3 × 3 
magic rectangle game and can be won for 
quantum strategies with certainty. We use this 
and the above properties to reduce the full 
characterisation of magic rectangles to that of 
1 × 𝑛 and 2 × 𝑛 games. We also show that the 
CHSH game is a 2 × 2  magic rectangle game. 
We then obtain optimal winning probabilities 
for the 1 × 𝑛 case which coincide with 
classical, and we lower and upper bound the 
winning probabilities for 2 × 𝑛 games, where 
both bounds are between classical strategies 
and unity. For the upper bound, we conjecture 
the almost quantum [4] winning probabilities 
based on numerical evidence. As a side result, 
we get that 2 × 𝑛 games with 𝑛 ≥ 3 can be won 
with certainty using behaviours at level 1 of the 
NPA hierarchy [5,6], while the quantum and 
almost quantum sets both give winning 
probabilities strictly smaller than unity. 
3 Application to Certified Randomness 
Finally, we use this characterisation to analyse 
certified randomness expansion from magic 
rectangle games. Specifically, we show that the 
winning probability of an 𝑚 × 𝑛 game with a 
distinguished input can be obtained from the 
(𝑚 − 1) × (𝑛 − 1) game. This, along with the 
previous results, allows us to determine the 
noise tolerance of each of these games, where it 
turns out that only 2 × 𝑛 and 3 × 𝑛 games can 
be used for certified randomness expansion. We 
then follow the analysis of [1] to get rates for 
certified randomness expansion using different 
magic rectangle games. 
For further details see the full paper [7].
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