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Abstract. In this article we consider flagged extensions of channels that can be written as convex
combination of other channels,  and find general  sufficient  conditions for the degradability of the
flagged extension. An immediate application is a bound on the quantum and private capacities of any
channel being a mixture of a unitary operator and another channel, with the probability associated to
the unitary operator being larger than 1/2. We then specialize our sufficient conditions to flagged
Pauli  channels,  obtaining  a  family  of  upper  bounds  on  quantum and  private  capacities  of  Pauli
channels. In particular, we establish new state-of-the-art upper bounds on the quantum and private
capacities of the depolarizing channel, BB84 channel and generalized amplitude damping channel.
Moreover, the flagged construction can be naturally applied to tensor powers of channels with less
restricting  degradability  conditions,  suggesting  that  better  upper  bounds  could  be  found  by
considering a larger number of channel uses. 
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Protecting  quantum states  against  noise  is  a
fundamental  requirement  for  harnessing  the
power  of  quantum  computers  and
technologies.  In  a  transmission  line  or  in  a
memory,  noise  is  modeled  as  a  quantum
channel,  and  several  accesses  to  the  channel
together  with  careful  state  preparation  and
decoding  can  protect  quantum  information
against  noise.  The  quantum  capacity  of  a
channel  is  the  maximal  amount  of  qubits
which can be transmitted reliably, per use of
the channel. The quantum capacity [1,2,3] of a
channel  can  then  be  obtained  as  a  limit  for
large n of the coherent information per use of
the  channel,  for  n  uses  of  the  channel.
However, the potential super-additivity of the
coherent  information  hinders  the  direct
evaluation  of  the  quantum  capacity.  The
existence  of  an  algorithmically  feasible
evaluation of the quantum capacity remains as
one of the  most  important  open problems in
quantum  Shannon  theory,  while  finding
computable  upper  or  lower  bounds  on  the
quantum  capacity  constitutes  important
progress. 

Extending  previous  results,  in  this  work  we
formulate sufficient conditions to obtain non-
trivial upper bounds on the quantum capacity,
by degradable flagged extensions.   A flagged
extension of a channel that can be written as
convex combinations of other channels is such

that the receiver gets, together with the output
of  one  of  the  channels  in  the  convex
combination,  a  flag  carrying  the  information
about  which  of  the  channels  acted.  While
flagged extensions with orthogonal flags were
already considered in [4,5], following [6,7] we
also  consider  non-orthogonal  flags.  By
specializing the new  degradability  conditions
we obtain state-of-the-art upper bounds on the
quantum  capacity for  two  important  Pauli
channels.  the depolarizing channel and BB84
channel,  and  for  the  generalized  amplitude
damping  channel,  improving  the  results  of
[6,7].  The  bounds  we  obtain  are  not
necessarily  the  best  bounds  available  with
these techniques, being  good guesses among
all  the  instances  of  flagged  channels  that
satisfy  the  sufficient  conditions.  In  fact,  we
obtain  an  infinite  sequence  of  optimization
problems depending on the number of uses of
the channel, each of which gives a bound on
the capacity. It  is  not  clear if a phenomenon
analogue  to  superadditivity  appears  in  this
scenario.  Even with  one  use  of  the  channel,
different  choice  of  Kraus  operators  give
different bounds. This work paves the way to a
systematic  study  of  bounds  on  the  quantum
capacity  with  flagged  extensions,  which
proved to be a powerful tool for this problem.
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