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Abstract: Koopman’s Hilbert space formalism for Classical Mechanics includes a 
noncommutative algebra of measurements that can be interpreted in a natural classical way 
and that is, as a Hilbert space formalism, as capable as Quantum Mechanics of modeling any 
collection of measurements, experiments, and analysis of results. Koopman CM and QM can 
be thought of as different approaches to the same Hilbert space mathematics of states and 
noncommutative measurements, which can help to minimize the weirdness of QM 
significantly.
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Extended abstract: The algebra of measurements in Koopman’s Hilbert space formalism 
for CM includes a noncommutative algebra of derivations that can be constructed using the 
Poisson bracket, which generate transformations of the phase space, as well as the familiar 
commutative algebra of multiplicative operators[1]. We can discuss multiple measurements, 
experimental contexts, and transformations of experimental raw data using Koopman CM 
Hilbert spaces and operators as well as we can using QM Hilbert spaces and operators [with 
the principal difference being that the spectrum of the Liouvillian operator that generates timelike 
evolution in CM is unbounded, whereas the spectrum of the Hamiltonian operator that generates 
timelike evolution in QM is bounded below.]

The confirmation that a classical probabilistic state is well-supported by the statistics of 
experimental raw data can be subtle, but there has never been the same uncertainty as there 
is in QM about what happens when a particular measurement result is recorded: when a coin 
that is thrown once is recorded as a head or tail, we typically do not immediately update the 
statistical state. Unless only a very few trials are possible, decision theory and parameter 
estimation strategies most often will wait until the statistics of many throws give us a relatively 
better reason to make a change.

Furthermore, when we model actual joint measurements in Koopman CM, we always use 
commutative operators, because the relative statistics will certainly be in the range [0..1], so 
the joint probabilities generated by a formalism must satisfy the same constraint. This 
constraint adopted for QM gives a detailed mathematical expression to Bohr’s idea that 
measurements constrain subsequent measurements, which we can prove to be equivalent to 
a statistical version of Heisenberg’s idea that the state collapses after every measurement — 
[1, Eq. (41)] gives that equivalence with mathematical succinctness: Tr[AXρA]=Tr[AXAρ], where 
the notation XA and ρA represents the Lüders operation for the measurement A applied to the 
measurement X or to the density matrix ρ. The mathematical and philosophical consequences 
of the collapse of the state can thereby be minimized.


In the six months since the publication of [1], there have been some shifts of emphasis in how I understand and 
present its material, which I hope will be even slightly more clear by the time q-turn comes around.


[1] Peter Morgan, Annals of Physics, Volume 414, March 2020, 168090, "An Algebraic 
Approach to Koopman Classical Mechanics", https://doi.org/10.1016/j.aop.2020.168090
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