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Introduction.— With the increasing complexity of
quantum systems, there is a growing need for certification
and verification of their performance. This task is usually
realized via the combination of quantum tomography and
various benchmarking schemes, which, however, depend
on the assumptions about the inner workings of quantum
systems. In contrast to these approaches, self-testing [1]
is a method which aims at proving the uniqueness of the
implemented states or measurements based solely on the
observed statistics and under minimal physical assump-
tions. The most know self-testing result is certification
of the singlet state in the case of maximal violation of
the CHSH Bell inequality [2]. More recently, a lot of
interest has been directed at self-testing in the prepare-
and-measure scenarios that is more experimentally ap-
pealing as compared to Bell’s (see e.g. [3, 4]). Therein,
one party, Alice, prepares a physical system in some state
of her choice and sends it to Bob, who measures it. In or-
der to get meaningful certification results in this work we
assume that the dimension of the quantum system used
for transmitting information is bounded from above.
Summary of the results.— In this work we propose an

analytical method allowing to certify, in the SDI way,
overlaps between preparations of arbitrary pure states
and arbitrary projective measurements in qudit systems.
The method is universally applicable and robust to exper-
imental noise. This result allows for robust SDI certifica-
tion of numerous properties such as MUB conditions [4],
information-completeness of measurements [5], and SIC
relations [6]. Moreover, for qubits our SDI certification
leads to a full robust self-testing result.
Description of the scenario.— Let %xa denote Alice’s

target preparation states with the choice of state speci-
fied by x ∈ [n] and a ∈ [d]. Let Bob’s target measure-
ments be described by PVMs (My

1 ,M
y
2 , . . . ,M

y
d ), with

y ∈ [n] and b ∈ [d]. We assume that the parties do
not have access to any entangled states or shared ran-
domness (the relaxation of this assumption is possible
arXiv:2003.01032). In this case the target statistics obey
p(b|a, x, y) = tr(%xaM

y
b ). Let the corresponding experi-

mental counterparts be denoted as %̃xa and M̃y
b . In the

SDI framework we assume that all states and measure-
ments are defined on the same Hilbert space with dimen-
sion no greater than d ∈ Z+.
Result 1: Certification of overlaps.— Let us first con-

sider the case of perfect statistics, i.e., p̃(b|a, x, y) =
p(b|a, x, y). Let us also assume that p(b|a, x, y) = δa,b,
whenever y = x, i.e., the states %xa and effects Mx

a are
“perfectly aligned". Due to the dimension assumption

we can easily conclude that %̃xa = M̃x
a , for all a ∈ [d] and

x ∈ [n]. From here it follows that tr(%̃xa%̃
y
b ) = tr(%̃xaM̃

y
b ) =

p̃(b|a, x, y) = tr(%xa%
y
b ), i.e., the overlaps between exper-

imental states match the ones of the target states. The
same holds for PVMs of Bob. Below we state our result
on the robustness.

Theorem 1. Let |p̃(b|a, x, y)−p(b|a, x, y)| ≤ ε,∀a, b, x, y.
The proposed scheme is robust to noise in the sense that

d∑
a=1

|| %̃xa || ≥ d(1− 2ε)

d∑
b=1

∣∣∣∣∣∣M̃y
b

∣∣∣∣∣∣ ≥ d(1− ε), ∀x, y,
and, for all x 6= x′, a 6= a′, y 6= y′, and b 6= b′:

|tr(%̃xa%̃x
′

a′ )− tr(%xa%
x′

a′ )| ≤ ε+
√
2ε+ d2ε2,

|tr(M̃y
b M̃

y′

b′ )− tr(My
bM

y′

b′ )| ≤ ε+ (1 + dε)
√

2ε+ d2ε2 .

Result 2: Self-testing of qubits.– For qubits certifica-
tion of overlaps allows to prove robust self-testing result.

Theorem 2. Let d = 2 and the conditions of Theorem 1
hold. Then there exist ε0 such that for ε ≤ ε0 there exist
U ∈ SU(2) (and possibly transposition (·)(T )) such that

1

2n

∑
a,x

tr(U(%̃xa)
(T )U†%xa) ≥ 1− f(ε),

1

2n

∑
b,y

tr(U(M̃y
b )

(T )U†My
b ) ≥ 1− g(ε), (1)

where functions f, g : [0, ε0) → R+ depend solely on the
target states and measurements and f(ε) ∝ ε, g(ε) ∝ ε
for small ε.
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FIG. 1. Examples: (a) presents results for n = 2, 3 qubit
MUBs. (b) presents results for two qubit bases for different
degree of bias α. Value α = 0 corresponds to two MUBs while
α = 1 gives two identical bases.
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