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Abstract We construct implementations of the PR-box using non-signaling quantum channels.
The main idea of the construction is taken from the general probabilistic theories (GPTs) and the
Boxworld theory. We derive a characterization of PR-boxes in GPTs, which we use to construct
all quantum qubit channels that maximally violate a given CHSH inequality. We show that all
such channels are entanglement-breaking.
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We investigate the structure of the non-
signaling channels such that the CHSH inequal-
ity is maximally violated for some choice of
channel measurements. Such channels will be
called the PR-channels. All the PR-channels
obtained so far [1–4] are in fact classical-to-
classical and it is natural to ask whether there
are some truly quantum non-signaling PR-
channels. An important question is the possi-
bility of instantaneous implementation of such
channels. Since PR-channels are non-signaling,
their instantaneous implementation is not for-
bidden by special theory of relativity because
no information is transferred, yet it is believed
that such implementations do not exist.

We present a characterization of the struc-
ture of all implementations of the PR-box in
the framework of GPTs, especially for theories
in which classical and quantum channels play
the role of states. It is known that there are
GPTs with bipartite non-signaling states and
measurements maximally violating the CHSH
exist [5, 6]. Moreover in any GPT, the pairs
of measurements appearing in such implemen-
tations must be maximally incompatible [7–9]
and we show how the corresponding bipartite
states are constructed from such pairs.

We apply the results to quantum bipar-
tite non-signaling channels, where both parts
of the input and output are qubit spaces. We
give a full description of all possible pairs of
maximally incompatible two-outcome channel
measurements and of all qubit PR-channels.
In particular, we prove that all these chan-
nels are necessarily entanglement-breaking. A
quantum channel Φ that maps states on Hilbert
space H1 to states on Hilbert space H2 is en-

tanglement breaking if for any bipartite state
ρ on H1⊗K the state (Φ⊗ 1)(ρ) is separable.
1 denotes the identity channel.

Our main results are stated informally in
the following theorems, exact formulations,
proofs and explicit examples of PR-channels
are in the preprint [10].

Theorem 1 (Informal, see [10, Theorem 1]).
Let K be a state space of some GPT and let
{A1,A2}, {B1,B2} be two pairs of two-outcome
measurements in the given theory. Let φ be a
bipartite non-signaling state of the theory such
that when φ is shared between Alice and Bob,
Alice measures either A1 or A2 and Bob mea-
sures either B1 or B2, then the resulting con-
ditional probability distribution maximally vi-
olates the CHSH inequality. Then both pairs
{A1,A2} and {B1,B2} are maximally incompat-
ible and φ is of the form

φ = φS + φ⊥ (1)

where φS corresponds to the bipartite state of
the Boxworld theory [6] that maximally violates
the CHSH inequality and φ⊥ is a vector such
that (Ai⊗Bj)(φ

⊥) = 0 for i, j ∈ {1, 2}, i.e.,
φ⊥ is a part of the state φ that does not con-
tribute to the result of the experiment.

Theorem 2 (Informal, see [10, Theorem 2]).
Let Φ be a qubit PR-channel. Then Φ is an
entanglement-breaking channel.

We believe that our results will bring more
insight into the structure of PR-channels, in
particular to the question of existence of their
instantaneous implementation.
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