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Abstract We study how a finite thermal environment can induce thermalization in a-thermal systems,
focusing on the specific setting where the system exhibits many-body localization (MBL). We derive
upper and lower bounds on the size of the heat bath required to thermalize a many-body system out of
equilibrium, under a broad class of thermodynamic models. These bounds show that the max-relative
entropy, under certain conditions on the Hamiltonian, characterizes the robustness of MBL systems
against thermalization. We apply our results to the disordered Heisenberg chain, and numerically study
the robustness of its MBL phase in terms of the required bath size.
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When pushed out of equilibrium, closed interacting quantum many-body systems generically re-
lax to an equilibrium state that can be described using thermal ensembles [1–3]. However, some sys-
tems equilibrate to a non-thermal state and exhibit features of what is known as many-body localization
(MBL) [4, 5]. Whether the MBL phase is stable when the system is coupled to an external environment
is an open question which has been recently considered in several papers [6–9]. This question is of criti-
cal importance for the experimental realization of many-body localized systems, and for its fundamental
implications on the process of thermalization in quantum systems.

We study the robustness of the MBL phase under external dissipative processes. More precisely, we
consider a many-body localized system coupled to a thermal reservoir with a finite size. The coupling
is described by a broad class of physically-relevant interaction models, where the interactions between
system and environment are described in terms of stochastic collisions which preserve the energy of the
global system. The bath is chosen to be composed by many independent copies of the thermal state
we expect the system to equilibrate into, an assumption satisfied in some experimental setups [10–12]
where copies of one-dimensional spin lattices are allowed to interact with each other.

The main tools we employ for deriving our bounds are taken from the field of quantum information
theory. Specifically, we make use of a technical result known as convex split lemma [13,14], first used in
the context of quantum Shannon theory and decoupling tasks. We connect this mathematical result to the
above class of thermodynamic models, that can be used to describe thermalization processes in quantum
systems [15]. Furthermore, we show that under certain assumptions on the system Hamiltonian, no
process within this class can bring the system closer to thermal equilibrium than the one associated with
the convex split lemma.

With the help of the above results, we derive lower and upper bounds to the size of the external bath
needed to thermalize a system. These bounds depend on the max-relative entropy [16], an element in
the family of quantum Rényi divergences [17], and on its smoothed version. In order to illustrate the
practical relevance of our results, we numerically compute these bounds for a specific system exhibiting
many-body localization, namely the disordered Heisenberg chain. Our findings suggest that the MBL
phase is robust to thermalization despite being coupled to an external bath, under our broad class of
collision models. Furthermore, our results extend the characterization of the stability of MBL systems
to scenarios where the external environment has a finite size and can be strongly coupled to the system.
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