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Abstract

In this paper we give a complete axiomatisation of qubit ZX-calculus via ele-
mentary transformations which are basic operations in linear algebra. This formal-
ism has two main advantages. First, all the operations of the phases are algebraic
ones without trigonometry functions involved, thus paved the way for generalis-
ing complete axiomatisation of qubit ZX-calculus to qudit ZX-calculus and ZX-
calculus over commutative semirings. Second, we characterise elementary trans-
formations in terms of ZX diagrams, so a lot of linear algebra stuff can be done
purely diagrammatically.
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ZX-calculus was introduced by Coecke and Duncan [3] as a graphical language

for quantum computing. It has exhibited its power in the application field of quan-
tum circuit optimisation [1, 8, 4]. On the theoretical side, ZX-calculus has been first
proved to be complete for overall qubit quantum computing in [9] and incorporated
in [5], which means quantum computation done by matrices can purely be done in
ZX-calculus. Afterwards, there came a few different complete axiomatisations of ZX-
calculus [6, 7, 10, 11]. However, all of these universal axiomatisations rely either on
some non-algebraic rule which has some trigonometry functions involved in, or on the
completeness of ZW-calculus [5].

In this paper, we give an algebraic complete axiomatisation (i.e. without non-
algebraic rules) of ZX-calculus without resort to the completeness of ZW-calculus.
Instead, based on the representation of elementary matrices in ZX-calculus, we obtain
a normal form for any vectors, then any matrix can be represented by a diagram due to
the map-state duality. This normal form leads to a proof of completeness, though full
of nontrivial techniques. In addition, we gain an advantage that no scalable techniques
are needed, as considered in [2].
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