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Noncontextuality inequalities are usually derived from the distinguishability properties of quan-
tum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to
derive noncontextuality inequalities. The Yu-Oh 13 ray noncontextuality inequality can be re-derived
and generalized as an instance of our antidistinguishability method. For some sets of states, the
antidistinguishability method gives tighter bounds on noncontextual models than just considering
orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality
inequalities based on mutually unbiased bases and symmetric informationally complete POVMs.

Quantum contextuality has its origins in work of Bell
[1], and Kochen and Specker [2], where they proved a
no-go theorem ruling out deterministic hidden variable
theories in which the value assigned to an observable
is independent of how you measure it. In recent years,
contextuality has attracted increasing attention for its
role in quantum information processing advantages [3–
10] and explaining the power of quantum computation
[7, 11–19]. For these purposes, it is useful to find new
classes of noncontextuality inequalities and to find the
tightest possible bounds on them.

Noncontextuality inequalities are usually based on
the orthogonality properties of sets of quantum states.
A powerful method for deriving bounds on noncon-
textuality inequalities from the orthogonality graphs of
events has been developed by Cabello, Severini and
Winter (CSW) [20, 21].

In this talk, we report on work published in [23] show-
ing that the antidistinguishability properties [24] [25] of
quantum states can also be used to derive noncontex-
tuality inequalities. The idea of antidistinguishability is
that if one of the states |a1〉 , · · · , |an〉 is prepared and
you do not know which then there exists a measurement
that allows you to definitively rule out one of the states.
Our method reproduces the inequality used in the Yu-
Oh 13 ray proof of contextuality [26], giving more in-
tuition behind its structure and allowing us to propose
several generalizations. In some cases, when we apply
both the CSW method and our method to the same set
of states, we get a much tighter bound on the noncon-
textuality inequality. An example of this is given for
noncontextuality inequalities based on Hadamard states
[27–29].

The antidistinguishability inequalities considered
here were first introduced as overlap bounds on the real-
ity of the quantum state [30–33] in the wake of the Pusey,
Barrett and Rudolph (PBR) theorem [34]. Our main re-
sult is to re-derive these inequalities as noncontextual-
ity inequalities. We also re-derive and generalize some
other noncontextuality inequalities that have appeared
in the literature [26, 35] by showing that they are exam-
ples of the antidistinguishability-based construction.

The main definitions and results of our work are as
follows.

Definition 1. A contextuality scenario C is a structure C =
(X,M,N ) where

• X is a set of outcomes.

• M is a set of subsets of X such that if M, M′ ∈ M
then M′ 6⊂ M. An M ∈ M is called a (measure-
ment) context.

• N is a set of subsets of X such that if M ∈ M then
M 6∈ N and if N, N′ ∈ N then N′ 6⊂ N. An N ∈ N
is called a maximal partial (measurement) context.

The idea of a contextuality scenario is that you have
a system on which you can perform several different
measurements. X is the set of all possible measurement
outcomes. A context M ∈ M is the full set of distinct
outcomes that can occur in some possible measurement.
A maximal partial context N ∈ N is a set of outcomes
that can occur as the outcome of some possible measure-
ment, but not necessarily the full set.

Definition 2. A strong pairwise antiset W in a contextu-
ality scenario C = (X,M,N ) is a set of outcomes for
which there exists a context M ∈ M such that, for every
a, b ∈W and c ∈ M, the triple {a, b, c} is antidistinguish-
able.

Definition 3. A weak pairwise antiset W in a contextuality
scenario C = (X,M,N ) is a set of outcomes for which
there exists another outcome c ∈ X such that, for every
a, b ∈W, the triple {a, b, c} is antidistinguishable.

The outcome c is called a principal outcome for the pair-
wise antiset W.

We are now in a position to state our main result.

Theorem 4. Let W be a pairwise antiset in a contextuality
scenario C = (X,M,N ). If W is strong then any noncon-
textual state ω satisfies

∑
a∈W

ω(a) ≤ 1. (1)

If W is weak then any noncontextual state ω that also satisfies
ω(c) = 1 for a principal outcome c satisfies eq. (1).
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