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If we’re ever going to have a useful and controllable quantum computer we need methods

to protect our information from noise. One avenue being attempted is reducing the number of
particles that need protection, while still maintaining a large computational space, by using
qudits instead of qubits. Experimental realizations of qudit quantum computers have been
progressing as well as the theory of making such systems [1][2][3]. These qudits (generally
quantum particles with a prime number of levels) will need codes to protect their information
as well, however, the primary focus has been on qubit codes so most qudit codes have very
challenging relations between the parameters of the code [4]: number of qudits n, number
of logical qudits n− k, distance of the code d, and number of bases (the local dimension) q.
These relations mean that the experimenter might have to not utilize some of their qudits
since there are no known codes using their exact relation between those parameters.

Generally codes for qudit systems are found through group theoretic extensions of qubit
codes [5] or through using the CSS theorem [6][7] (such as [4][8][9]), however, a few examples
of codes are known which have no dependency on their local dimension [10], while still
maintaining their distance. My recent work [11] builds off these fortuitous examples, showing
that any stabilizer code over q levels can be used as a stabilizer code over any other prime
p leveled system. This greatly reduces the restrictions on the relations between parameters.
This only says that it’s a valid code, but nothing about the distance of these codes. Through
a careful analysis of error kinds in the case of non-degenerate codes we have shown the caveat
as these invariant forms of these codes, stabilizer codes where the commutators for the
generators are exactly the zero vector, are only guaranteed to at least preserve the distance
of the code beyond some cutoff value p∗ which is a function of: n, k, d, and q.

In addition, I identify under what cases the distance of the code can actually increase
upon being used to protect some system over p levels where p > q. We identify another
lower cutoff value: p∗∗. These results show that generally if we begin with a code over q
levels and use it for a system over p levels the distance: must decrease if p < p∗∗, may
remain, decrease, or increase for p∗∗ ≤ p < p∗, and must at least remain for p > p∗. Lastly,
we may construct the logical operators for such codes, thus making these viable choices for
protecting qudit information.

In some regards one may consider this a tool somewhat similar in nature to CSS code
construction: CSS allows classical to quantum code construction whereas this allows for
quantum to quantum code construction. In addition, this work may provide an avenue for
determining whether a code is utilizing the qudit space particularly well, beyond the metric
of the generalized quantum Hamming bound.

a Link to this work: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.052343
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