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A series of recent works has shown that placing communication channels in a coherent su-
perposition of alternative configurations can boost their ability to transmit information. In-
stances of this phenomenon are the use of communication devices in a superposition of alterna-
tive causal orders, and the transmission of information along a superposition of alternative tra-
jectories. To shed light on these new types of communication protocols, we develop a general
framework of resource theories of communication, formulating a minimal requirement for meaning-
ful allowed operations on communication resources. The following is an extended abstract of [1]:
https://iopscience.iop.org/article/10.1088/1367-2630/ab8ef7/pdf
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Quantum Shannon theory describes communication
where information is encoded in quantum states. In a se-
ries of recent works, a generalisation of quantum Shannon
theory has been proposed where not only the information
carriers, but also the configuration of the transmission
lines can be in a quantum superposition. In particular,
communication channels can be combined in a superpo-
sition of different causal orders [2–9], using an operation
known as the quantum SWITCH [10, 11] (Fig. 1a), or in a
similar spirit, information can be sent along a superposi-
tion of trajectories [12–15] (Fig. 1b). Both of these types
of coherent control over channel configurations have been
shown to yield a wide range of communication advantages
in comparison to standard quantum Shannon theory.

Some of these communication advantages have stim-
ulated experiments in quantum optics [5, 16–18]. From
a practical point of view, it is also possible to construct
similar protocols using a superposition of encoding and
decoding operations [19]. This motivates a formal com-
parison between three types of coherent control: (1) con-
trol over the causal order of communication channels [2–
4], (2) control over the choice of communication channels
[12–14], and (3) control over encoding and decoding op-
erations [19].

In this paper, we construct a general framework for re-
source theories of communication, and use it to shed light
on the different extensions of quantum Shannon theory
that have been proposed so far. In this framework, the
resources are communication devices, and the allowed op-
erations are (a) the placement of communication devices
between the communicating parties, and (b) the connec-
tion of communication devices with local devices in the
parties’ laboratories. The allowed operations are required

(a) (b)

FIG. 1: (a) Communication in a superposition of the causal
orders of communication channels. (b) Communication in a
superposition of the information carriers’ trajectories.

to satisfy the minimal condition that they do not enable
communication independently of the devices representing
the initial resources.

Our framework captures the differences between the
different types of control (1)–(3), and helps clarify various
comparisons that have been made across protocols using
them. Applying our resource-theoretic framework, we
argue that (a) the comparison between control of causal
orders and control of communication channels proposed
in Ref. [13] is uneven, because the control of communica-
tion channels requires stronger initial resources than the
control of causal orders, and (b) the examples of commu-
nication with control over encoding and decoding pro-
posed in Ref. [19] do not satisfy the minimal requirement
of a resource theory of communication.

More generally, our framework enables a formal
construction and comparison of novel communication
paradigms.
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Zeuner, L. M. Procopio, Č. Brukner, and P. Walther,
Science Advances 3, e1602589 (2017).

[58] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa,
C. Branciard, J. Romero, and A. G. White, Physical Re-
view Letters 121, 090503 (2018).

[59] M. M. Taddei, J. Cariñe, D. Mart́ınez, T. Garćıa,
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