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We present a simple and fast numerical procedure to search for good quantum codes for arbitrary
noise processes, using the worst-case fidelity as the figure of merit. We reduce the complexity of the
problem by fixing the form of the recovery to be a near-optimal recovery map, adapted to the noise
in question. For qubit codes, we obtain a simple form for the objective function, which makes the
optimization tractable. We parameterize our search space of encoding unitaries using the Cartan
decomposition which allows us to search over the nonlocal parts of the encoded space, leading to
families of channel-adapted codes.
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Motivation: We are today in the so-called “NISQ”
era [1], with quantum devices that have small number
of noisy qubits, that are not amenable to implement
regular quantum error correction (QEC) and fault tol-
erance schemes. While much of the existing work on
QEC revolves around using standard codes [3] that can
correct for arbitrary errors on individual qubits, this ap-
proach may be resourceful, requiring atleast five physical
qubits to protect one qubit. However, when we have
prior knowledge of the noise afflicting the system, codes
adapted to the noise (channel-adapted codes) in question
are known to be more effective [5, 6, 8]. In our work,
we provide a prescription to search for shorter, channel-
adapted codes, tailored to deal with specific noise pro-
cesses.
Finding optimal qubit codes: We focus on finding
channel-adapted qubit codes that minimize the worst-
case fidelity for the storage of a single qubit of informa-
tion. For a given pair of encoding W and recovery R, for
a noise process E , worst-case fidelity is obtained as

F 2
min(W,R; E) ≡ min

|ψ〉∈H0

F 2(|ψ〉,W−1 ◦ R ◦ E ◦W). (1)

where we minimize the fidelity F 2(., .) over the single
qubit state space H0 that we encode in, and the func-
tion F 2 is defined as F 2(|ψ〉,M) = 〈ψ|M(|ψ〉〈ψ|) |ψ〉.
In order to obtain the best performing codes one should
further optimize the fidelity in Eq. 1 over encodings W
and recovery R, thus leading to a triple optimization.
By assuming a specific form for the recovery as the near-
optimal Petz map [7] RP , the optimal encoding for a
given noise process E is obtained as a solution to the op-
timization of the fidelity loss function [8] as given below,

ηop = argmin
W

1

2
[1− tmin(W)]. (2)

Here tmin(W) is the smallest eigenvalue of a 3×3 matrix
for a given encoding W, which is calculable numerically.
Role of the Cartan decomposition: We make a well
motivated assumption about the noise that the full n-
qubit noise can be expressed as tensor products of n sin-
gle qubit channels [11], giving the noise a local charac-
ter. One then expects to find good code spaces in the
regions of state space with non-local structure. This mo-
tivates our use of the Cartan decomposition [9] for the
encoding unitaries, which breaks down a given unitary
as tensor products of alternating single qubit (local) and
multi-qubit (non-local) unitaries [10]. This allows us to
explicitly search over the nonlocal pieces of the Cartan
decomposition, thereby reducing the parameters of the
search space, and leading to families of good quantum
codes.
Example: We demonstrate the usefulness of our search
procedure for the case of the amplitude damping chan-
nel in the Fig. 1 below. The figure illustrates how the
4-qubit codes obtained using our procedure outperform
the standard 5-qubit code over the entire range of noise
parameter γ. Furthermore, using the Cartan form, we
also obtain simple encoding circuits for the optimal codes
obtained using our search [12].
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FIG. 1. Codes for the amplitude damping channel.
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