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Abstract. The rates at which bi-partite entangled states can be asymptotically transformed are fully 
determined. In the multi-partite setting, a similar question of the optimally achievable rates of 
transforming one pure state into another is notoriously open. In this work, we report substantial 
progress by deriving simple upper and lower bounds on the rates that can be achieved in asymptotic 
multi-partite entanglement transformations. These bounds are based on ideas of entanglement 
combing and state merging. We identify cases where the bounds coincide and hence provide the exact 
rates. This result provides further scope for quantum internet applications beyond points-to-point.

Keywords:  Quantum  Information  Theory,  Multi-partite  Entanglement  Theory,  Quantum
Communication,  Resources Management in Quantum Networks

Arxiv Link: https://arxiv.org/abs/1709.09693

Recently accepted in Physical Review Letters

https://arxiv.org/abs/1709.09693


Entanglement is the feature of quantum mechanics that renders it distinctly different from a 
classical theory [1]. It is at the heart of quantum information science and technology as a resource. A 
resource which needs to be used in different form. As a consequence, questions were asked how one 
form of entanglement could be transformed into another. It was one of the early main results of the 
field of quantum information theory to show that all pure bi-partite states could be asymptotically 
reversibly transformed to another bi-partite state with local operations and classical communications 
(LOCC) at a rate that is determined by a single number [2]. However, the situation in the multi-partite 
setting is significantly more intricate [3]. The rates that can be achieved when aiming at 
asymptotically transforming one multi-partite state into another with LOCC are far from clear.

We determine, in this work, simple lower and upper bound for the asymptotic rate of 
conversion between multi-partite entangled states. The setup is the following: let N be an integer, we 
consider N+1 parties we divide into one Alice and N Bobs. They share together several copies of a 
pure state ψA,B1,...,BN, each of the party can act on its part of the state and can communicate classicaly 
with the others. The aim is the asymptotic conversion of the (N+1)-partite pure state ψA,B1,...,BN into 
another pure state σA,B1,...,BN, with a rate of conversion as high as possible. Noting 
R(ψA,B1,...,BN→ σA,B1,...,BN) as the optimal rate of asymptotic conversion, we prove that:

where X denotes a subset of all Bobs. The already known upper bound follows from the fact that any 
multipartite LOCC protocol is also bipartite with respect to any of the bipartitions and, as previously 
mentionned, bi-partite asymptotic conversion is fully known. Our main result is the finding of the 
lower bound, which is optimized by taking the maximum over all possible choices of Alice. It is built 
upon the machinery of entanglement combing, which was introduced and studied for general N-partite
scenarios in [4] and quantum state merging [5]. Entanglement combing is a class of protocol 
converting multipartite states into a product of bi-partite states, which can be used, along with 
Schumacher compression, as means to distribute the copies of σA,B1,...,BN. Judicious uses of Von 
Neumann entropy strong subbaditivity and time-sharing allow us to achieve a protocol which reaches 
the rate of conversion given by the lower bound. 

We show the lower bound can be tight with the upper one in practical cases, thus giving the 
optimal asymptotic rate of conversion. We choose to consider the problem of tri-partite GHZ states 
distillation. We consider, as an example, the family of states given by 
|ψ〉ABC=cosα|0,0,0〉+sinαsinβ|0,1,1〉+sinαcosβ|1,0,1〉, with α as a real parameter and β as 1/2. 
Computing both the lower bound and the difference between upper and lower bound, we show that 
the bounds are tight for a large parameter range of α, implying that our bound gives the exact 
conversion rate in these cases. To the best of our knowledge, this outperforms any previously known 
bounds, such as the long-standing one of Smolin and al. [6] as they consider only one-way 
broadcasting protocols while ours is not limited to a particular class of LOCC.

 It should be clear that the results established here readily allow to assess how resources for 
multi-partite protocols can be prepared from multi-partite states given in some form. There is still a lot
of unknown concerning the manipulation of multi-partite resources. This state of affairs is 
unfortunate, and even more so since multi-partite resources are at the heart of several quantum 
applications such as quantum secret sharing [7], quantum voting [8] or distributed quantum 
computing [9] and implementation of those applications in global quantum networks  -- the “quantum 
internet” [10] -- may become an experimental reality in the not too far future. However, creating 
entanglement is undeniably costly in quantum networks, prompting the need that previously 
distributed states are reused as much as possible by converting them into desired resources rather than
using more precious entanglement, in schemes involving more than one copy at a time. We hope that 
our established bounds provide meaningful guidance as to how to manage and recycle resources for 
quantum networks.  
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