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Estimating the expectation value of an operator corresponding to an observable is a fundamental task in quantum
computation. For example, expectation estimation of a Hamiltonian features prominently as the quantum sub-
routine of the variational quantum eigensolver (VQE) algorithm [1]. It is often impossible to obtain such estimates
directly, as the computer is restricted to measuring in a fixed computational basis. One common solution splits the
operator into a weighted sum of Pauli operators and measures each separately, at the cost of many measurements.
An improved version collects mutually commuting Pauli operators together before measuring all operators within
a collection simultaneously. The effectiveness of doing this depends on two factors. Firstly, we must understand
the improvement offered by a given arrangement of Paulis in collections. Secondly, to measure all Pauli operators
within a collection simultaneously, a circuit, U , is required to rotate them to the computational basis. Recently, a
series of papers [2–8] have appeared that together make good progress on both the collecting strategy and rotation
circuit construction problems. Our paper is in this same arena and addresses both problems.

We first consider the arrangement of Pauli operators into commuting collections. We define two metrics, R and
R̂, that quantify the performance of any given arrangement. R and R̂ give the ratio of the number of measurements
required in the uncollected case to the collected case to attain a fixed level of accuracy, assuming measurements
are distributed optimally between the collections to minimise the finite sampling error [9–11]. R is state-dependent
and R̂ is designed to approximate E[R] over the uniform spherical measure. With R and R̂ defined, we prove
that breaking a commuting collection into two never reduces the number of measurements required to obtain an
expectation estimate to a given level of accuracy. This result contradicts a previous conclusion, demonstrated
through a toy example [6, 12], that breaking a collection can be advantageous. The discrepancy is because we
distribute measurements optimally among the collections, whereas in the previous works, measurements are dis-
tributed uniformly. We then propose a new collecting strategy, “SORTED INSERTION”. Unlike all strategies
used previously that seek the minimum number of collections [2, 3, 6, 7], SORTED INSERTION attempts to
maximise R̂ by considering the coefficients of the Pauli operators in its assignment of collections.

Turning to the rotation circuit construction problem, we contribute two new methods, “CZ” and “CNOT”, for
constructing Clifford circuits, U , that enable simultaneous measurement of a collection of arbitrary commuting
Paulis. Like Gokhale et al. [6], we approach the problem via the stabiliser formalism, but further consider the
case where the number of independent operators, k, in a collection can be less than the number of qubits, n. We
show that the number of two-qubit gates in U can be reduced in a way that scales with k. Furthermore, we allow
classical post-processing, which can save quantum resources. Building on work in the graph-state [13] and circuit
synthesis [14, 15] literature, we obtain U with numbers of two-qubit gates at most ucz(k, n) = kn − k(k + 1)/2
and ucnot(k, n) = O(kn/ log k) for the CZ- and CNOT-constructions respectively. The sparsity of an extension
step that exploits k plays an important role for both formulae.

We end our paper with a series of numerical results on molecular Hamiltonians, ranging in size from H2, which
requires two qubits, to H2Se, which requires 38. For the nine smallest systems, we calculate the value of R for 100
different random quantum states to quantify the improvement due to assembling the Hamiltonian into collections of
commuting operators. In practice, the value of R can at best be obtained approximately by making measurements
on the quantum computer and so cannot be used to determine the expected advantage of a particular arrangement
a priori. The metric R̂, on the other hand, depends only on the coefficients of the terms in the Hamiltonian. We
find that R̂ closely approximates the average of R over many quantum states for the states we have considered.
We therefore propose using R̂ as a metric for the quality of a collecting method, and compare different methods
of collecting the operators with this metric in mind. Calculating R̂ on the full range of molecules shows that our
SORTED INSERTION algorithm results in a 10- to 60-fold reduction in the number of measurements required
to attain a fixed level of accuracy. We further find that SORTED INSERTION outperforms the four conventional
greedy colouring algorithms we tested, as measured by R̂. The reduction in the number of measurements required
comes at the cost of applying additional quantum gates before the qubits are measured, the most costly of which are
two-qubit gates. Using the CZ-construction, for the molecules we have considered, we find that the largest number
of two-qubit gates required is far lower than the theoretical maximum, typically by a factor of approximately 3.5.
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