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In order to reject the local hidden variables hy-
pothesis, the usefulness of a Bell inequality can be
quantified by how small a p-value it will give for a
physical experiment. When the Bell inequality is re-
formulated as a nonlocal game with local bound ω`

and Tsirelson bound ωq, we show that the expecta-
tion value of its p-value after n rounds is upperboun-
ded by (1 − (ωq − ω`)2)n, based on the results of [1].
Therefore, having a large gap ωq − ω` implies hav-
ing a small expected p-value, and the gap is a useful
figure of merit to optimise. We develop an algorithm
for transforming an arbitrary Bell inequality into such
an optimal nonlocal game, showing that it reduces to
solving a linear programming problem, and present
its results for the CGLMP and Inn22 inequalities.

We also present explicit examples of nonlocal games
such that the gap between their local and Tsirelson
bounds is arbitrarily close to one. Since this implies
that the probability of winning the nonlocal game
with the optimal quantum strategy is arbitrarily close
to one, and the p-value of such a victory is arbitrarily
close to zero, this makes it possible to reject local hid-
den variables with arbitrarily small p-value in a single
shot, without needing to collect statistics.

The first example consists of playing n copies of
the CHSH game simultaneously, its parallel repetition.
Using Rao’s bound [2] we show that the probability
of winning more than 3/4 of the parallel instances,
the amount expected from its local bound, goes to
zero exponentially with n. On the other hand, the
quantum probability of winning more than 3/4 of the
parallel instances, but fewer than (2+

√
2)/4 of them,

goes exponentially to 1, allowing us to obtain an ar-
bitrarily small p-value. As an example, to achieve a
p-value of 10−5 it is enough to have 67 683 296 paral-
lel instances, or a quantum state of local dimension
267 683 296.

The second example demonstrates that parallel re-
petition is not necessary to obtain a single-shot re-
jection of local hidden variables: it consists of the
Khot-Vishnoi game [3–5] with a choice of paramet-
ers such that its local bound is upperbounded by

1
log( 4√

d)
and its Tsirelson bounded lowerbounded by

1− log(log( 4√
d))

log( 4√
d)

. Here d is both the number of outputs
per party and the local dimension of the quantum
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Figure 1: Schematic representation of a bipartite nonlocal
game. A referee samples questions x and y with probability
µ(x, y) and sends them to Alice and Bob. They send their
answers a and b back to the referee, who accepts their an-
swers with probability V (a, b, x, y), in which case they win.
If the maximal probability of winning the game with local
hidden variables ω`(G) is close to zero and the probability of
winning it with the optimal quantum strategy ωq(G) is close
to one then this nonlocal game makes it possible to reject
local hidden variables in a single round.

state used to achieve this quantum probability of suc-
cess. It then follows that to achieve a p-value of 10−5

it is enough to have a quantum state of local dimen-
sion 2577 079. This dimension is much smaller than in
the CHSH case, but it does not imply a simpler ex-
perimental setup, because to obtain this probability of
success in the Khot-Vishnoi game one needs to imple-
ment entangled measurements on the whole quantum
state, whereas in the CHSH case independent meas-
urements suffice.

This raises the question of whether it is possible to
achieve a single-shot rejection of local hidden variables
with easier experimental setups. To answer that, we
considered what is the largest possible gap that can be
achieved using quantum states of local dimension d,
and showed that ωq−ω` ≤ 1− 3

ed , based on the results
of [6, 7]. If there exists a nonlocal game achieving
this bound, a quantum system of local dimension 217

would be enough for the single-shot rejection.
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