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Abstract. The celebrated exchange fluctuation theorem  proposed by Jarzynski and Wózcik, (Phys Rev. Lett. 92: 

230602, 2004) for heat exchange between two systems in thermal equilibrium at different temperatures  is 

explored here for quantum Gaussian states in thermal equilibrium. We employ Wigner distribution function 

formalism for quantum states, which exhibits close resemblance with the classcial phase-space trajectory 

description, to arrive at this fluctuation theorem. We show that the quantum Jarzyinski- Wózcik theorem agrees 

with the corresponding classical result in the high temperature limit. 
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The fluctuation-exchange relations can be considered as generalizations of second law of 

thermodynamics for small systems and they connect the probabilities of appearance of physical 

quantitites such as work, heat, number of particles, in a given set up, to those obtainable in a time-

reversed formulation. For instance, the Jarzynski-Wózcik exchange fluctuation theorem (XFT) [1] 

given by 
𝑝𝜏(𝑄)

𝑝𝜏(−𝑄)
= 𝑒△𝛽 𝑄 , △ 𝛽 = (𝑘 𝑇𝐴)−1 − (𝑘 𝑇𝐵)−1, quantifies the ratio of probability 𝑝𝜏(𝑄) of heat 

exchange during interaction of  system A (in equilibrium at temperature 𝑇𝐴) and system B (in thermal 

equilibrium at temperature 𝑇𝐵) for a fixed time duration 𝜏, to its time-reversed counterpart 𝑝𝜏(−𝑄). 

Here 𝑘 denotes Boltzmann’s constant and 𝑄 is the amount of heat exchanged. In the quantum regime, 

Jarzynski and Wózcik considered systems with discrete energy levels to arrive at an analogous quantum 

XFT.  In this work we retain the flavour of phase-space approach in the quantum scenario, by confining 

ourselves to continuous variable Gaussian thermal states which are characterized by positive Wigner 

phase space distributions. We follow analogous steps as that of the original work [1] to arrive at the 

heat exchange-fuctuation theorem in the quantum realm for two Gaussian states in thermal equilibrium 

at temperatures 𝑇𝐴, 𝑇𝐵.   

 

Wigner function of ensembles of quantum oscillators 𝐴 and  𝐵 prepared in thermal equilibrium at 

temperatures 𝑇𝐴, 𝑇𝐵 respectively is given by   

          𝑊(𝜁) = (4𝜋2 𝜈𝑇𝐴
𝜈𝑇𝐵

) −1  Exp (−
𝐻(𝜁𝐴)

ℏ𝜔𝐴 𝜈𝑇𝐴

−
𝐻(𝜁𝐵)

ℏ𝜔𝐵𝜈𝑇𝐵

) , 𝜁 = (𝜁𝐴;  𝜁𝐵) = (𝑞𝐴, 𝑝𝐴;  𝑞𝐵, 𝑝𝐵)   

Here 𝐻(𝜁𝑖) =
𝑃𝑖

2

2𝑚𝑖
+

1

2
 𝑚𝑖𝜔𝑖

2𝑄𝑖
2,  𝑄𝑖 = √(ℏ/𝑚𝑖𝜔𝑖)  𝑞𝑖,    𝑃𝑖 = √𝑚𝑖𝜔𝑖ℏ 𝑝𝑖 , 𝑖 = 𝐴, 𝐵 denotes classical 

Hamiltonian function of oscillators and  𝜈𝑇𝑖
= cot(ℏ𝜔𝑖/𝑘 𝑇𝑖) , 𝑖 = 𝐴, 𝐵.  The systems are kept in 

contact for a fixed time duration 𝜏  where the interaction Hamiltonian is quadratic in phase space 

operators, so that the canonical commutation relations are preserved. This results in a real linear 

symplectic transformation  𝜁 →  𝜁𝜏 =  𝑆𝜏 𝜁   of the phase space column 𝜁. Dynamical evolution under 

time-reversed trajectory  𝜁0
∗ = 𝜁�̅� to  𝜁𝜏

∗ = 𝜁0̅ leads to the ratio of Wigner function  
𝑊(𝜁0)

𝑊(𝜁0
̅̅ ̅)

= ∏  𝑒△𝐸𝑖 𝑄
𝑖 ,

△ 𝐸𝑖 = 𝐻(𝜁�̅�0) − 𝐻( 𝜁𝑖0), i=A,B. One obtains [1, 2]  △ 𝐸𝐴 ≈-△ 𝐸𝐵 = 𝑄(𝜁0) as amount of heat 

exchanged during evolution when interaction energy can be ignored. Consequently, it may be seen that 

the ratio of Wigner functions is given by  (𝑊(𝜁0)/𝑊(𝜁0̅)) =  𝑒△𝛽𝜔 𝑄(𝜁0),△ 𝛽𝜔 = (ℏ𝜔𝐴 𝜈𝑇𝐴
)

−1
−

(ℏ𝜔𝐵 𝜈𝑇𝐵
)

−1
.  Expressing 𝑝𝜏(𝑄) = ∫ 𝑑𝜁0  𝑊(𝜁0)  𝛿(𝑄 − 𝑄(𝜁0)) and simplifying using time-reversal 

properties, one obtains the Jarzynski- Wózcik relation 

                                                         𝑝𝜏(𝑄)/𝑝𝜏(−𝑄) = 𝑒△𝛽𝜔 𝑄 ,  

which is structurally similar to the classical XFT. Classical XFT is realized when △ 𝛽𝜔  → △ 𝛽 =
(𝑘 𝑇𝐴)−1 − (𝑘 𝑇𝐵)−1 in the high temperature limit  (ℏ𝜔𝑖/𝑘 𝑇𝑖) → 0.  Deviation of XFT from its 

classical counterpart can be attributed to the fact that classical equipartition theorem no longer holds in 

the quantum regime [3].    
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